• Alexander, M., , U. Bhatt, , J. Walsh, , M. Timlin, , J. Miller, , and J. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890904, doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., , L. Ferranti, , F. Molteni, , and T. Palmer, 2010: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions. Quart. J. Roy. Meteor. Soc., 136, 16551664, doi:10.1002/qj.661.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., , J. Methven, , and N. Roberts, 2008: Large-scale context for the UK floods in summer 2007. Weather, 63, 280288, doi:10.1002/wea.322.

    • Search Google Scholar
    • Export Citation
  • Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global Planet. Change, 68, 149163, doi:10.1016/j.gloplacha.2009.04.001.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Comiso, J. C., 2012: Large decadal decline of the Arctic multiyear ice cover. J. Climate, 25, 11761193, doi:10.1175/JCLI-D-11-00113.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., , C. L. Parkinson, , R. Gersten, , and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , G. Magnusdottir, , R. Saravanan, , and A. Philips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, doi:10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. Tomas, , M. Alexander, , and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. Tomas, , and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, doi:10.1175/JCLI-D-14-00325.1.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , R. T. Sutton, , T. Woollings, , and K. Hodges, 2013: Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate. Environ. Res. Lett., 8, 034037, doi:10.1088/1748-9326/8/3/034037.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , J. Knight, , H. W. Linderholm, , D. Fereday, , S. Ineson, , and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, doi:10.1175/2008JCLI2459.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , W. Chan, , D. J. Leathers, , J. R. Miller, , and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., , and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, doi:10.1007/s00382-009-0535-6.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., , J. C. Comiso, , N. E. DiGirolamo, , C. A. Shuman, , J. E. Box, , and L. S. Koenig, 2013: Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett., 40, 21142120, doi:10.1002/grl.50240.

    • Search Google Scholar
    • Export Citation
  • Honda, M., , J. Inoue, , and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hunke, E., , and W. Lipscomb, 2008: CICE: The Los Alamos sea ice model, documentation and software user’s manual, version 4.0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 73 pp.

  • Jaiser, R., , K. Dethloff, , D. Handorf, , A. Rinke, , and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, doi:10.3402/tellusa.v64i0.11595.

    • Search Google Scholar
    • Export Citation
  • Knudsen, E. M., , Y. J. Orsolini, , T. Furevik, , and K. I. Hodges, 2015: Observed anomalous atmospheric patterns in summers of unusual Arctic sea ice melt. J. Geophys. Res. Atmos., 120, 25952611, doi:10.1002/2014JD022608.

    • Search Google Scholar
    • Export Citation
  • Laxon, S., and et al. , 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737, doi:10.1002/grl.50193.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , J. A. Curry, , H. Wang, , M. Song, , and R. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. L’Institut Pierre-Simon Laplace Tech. Rep. 27, 300 pp.

  • Magnusdottir, G., , C. Deser, , and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876, doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NSIDC, 2012: Arctic sea ice news and analysis. Accessed March 2015. [Available online at http://nsidc.org/arcticseaicenews/.]

  • Overland, J., , K. Wood, , and M. Wang, 2011: Warm Arctic–Cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15787, doi:10.3402/polar.v30i0.15787.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., , and K. Haines, 2009: Estimating oceanic heat content change using isotherms. J. Climate, 22, 49534969, doi:10.1175/2009JCLI2823.1.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., , and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, doi:10.1175/JCLI-D-13-00272.1.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , J. A. Richter-Menge, , K. F. Jones, , and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Petrie, R. E., , L. C. Shaffrey, , and R. T. Sutton, 2015: Atmospheric response in summer linked to recent Arctic sea ice loss. Quart. J. Roy. Meteor. Soc., 141, 20702076, doi:10.1002/qj.2502.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., , J. Walsh, , and R. Kwok, 2012: Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Amer. Meteor. Soc., 93, 145151, doi:10.1175/BAMS-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Porter, D., , J. Cassano, , and M. Serreze, 2012: Local and large-scale atmospheric responses to reduced Arctic sea ice and ocean warming in the WRF model. J. Geophys. Res., 117, D11115, doi:10.1029/2011JD016969.

    • Search Google Scholar
    • Export Citation
  • Sarafanov, A., , A. Falina, , A. Sokov, , and A. Demidov, 2008: Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J. Geophys. Res., 113, C12022, doi:10.1029/2008JC004975.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A., , R. Lindsay, , J. Zhang, , M. Steele, , H. Stern, , and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, doi:10.1029/2011JC007084.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J., , D. Reader, , M. Plummer, , P. Sigmond, , P. Kushner, , T. G. Shepherd, , and R. Ravishankara, 2009: Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery. Geophys. Res. Lett., 36, L24701, doi:10.1029/2009GL041239.

    • Search Google Scholar
    • Export Citation
  • Screen, J., 2013: Influence of Arctic sea ice on European summer precipitation. Environ. Res. Lett., 8, 044015, doi:10.1088/1748-9326/8/4/044015.

    • Search Google Scholar
    • Export Citation
  • Screen, J., , and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, doi:10.1002/grl.50174.

    • Search Google Scholar
    • Export Citation
  • Screen, J., , I. Simmonds, , C. Deser, , and R. Tomas, 2013: The atmospheric response to three decades of observed arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I. A., , and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937943, doi:10.1007/s00382-008-0463-x.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., , and R. G. Barry, 2005: The Arctic Climate System.Cambridge University Press, 385 pp.

  • Serreze, M., , and R. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., , and R. T. Sutton, 2006: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. J. Climate, 19, 11671181, doi:10.1175/JCLI3652.1.

    • Search Google Scholar
    • Export Citation
  • Singarayer, J., , J. Bamber, , and P. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125, doi:10.1175/JCLI3649.1.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and et al. , 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., , M. C. Serreze, , M. M. Holland, , J. E. Kay, , J. Malanik, , and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , X. Zhang, , X. Yang, , and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , X. Zhang, , and J. A. Francis, 2014: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Climate Change, 4, 4550, doi:10.1038/nclimate2065.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, doi:10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Walsh, J., 2013: Melting ice: What is happening to Arctic sea ice, and what does it mean for us? Oceanography, 26, 171181, doi:10.5670/oceanog.2013.19.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , L. Zhang, , S.-K. Lee, , L. Wu, , and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Williams, K., and et al. , 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 521565, doi:10.5194/gmdd-8-521-2015.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and D. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, doi:10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 18
PDF Downloads 58 58 12

Atmospheric Impact of Arctic Sea Ice Loss in a Coupled Ocean–Atmosphere Simulation

View More View Less
  • 1 NCAS-Climate, Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0316.s1.

Corresponding author address: Ruth E. Petrie, Dept. of Meteorology, Whiteknights Campus, University of Reading, Reading RG6 6BB, United Kingdom. E-mail: r.e.petrie@reading.ac.uk

Abstract

The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0316.s1.

Corresponding author address: Ruth E. Petrie, Dept. of Meteorology, Whiteknights Campus, University of Reading, Reading RG6 6BB, United Kingdom. E-mail: r.e.petrie@reading.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 1.69 MB)
Save