• Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, doi:10.1002/qj.479.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , and J. Jones, 2011: Tropospheric precursors and stratospheric warmings. J. Climate, 24, 65626572, doi:10.1175/2011JCLI4160.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C., , D. Hartmann, , and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and et al. , 2010: Stratosphere–troposphere coupling and annular mode variability in chemistry–climate models. J. Geophys. Res., 115, D00M06, doi:10.1029/2009JD013770.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2009: Observed stratospheric downward reflection and its relation to upward pulses of wave activity. J. Geophys. Res., 114, D08120, doi:10.1029/2008JD010493.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1977: On the coherence between progressive and retrogressive waves and a partition of space–time power spectra into standing and traveling parts. J. Appl. Meteor., 16, 368373, doi:10.1175/1520-0450(1977)016<0368:OTCBPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space–time spectral analysis. J. Atmos. Sci., 36, 10171029.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., , T. G. Shepherd, , and G. L. Manney, 2013: Statistical characterization of Arctic polar-night jet oscillation events. J. Climate, 26, 20962116, doi:10.1175/JCLI-D-12-00202.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 22182225, doi:10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. H. Chan, 1983: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part II: Lagged correlations. J. Atmos. Sci., 40, 27512767, doi:10.1175/1520-0469(1983)040<2751:STCVAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , D. W. J. Thompson, , and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , B. Farrell, , and D. Jacqmin, 1982: Vacillations due to wave interference: Applications to the atmosphere and to annulus experiments. J. Atmos. Sci., 39, 1423, doi:10.1175/1520-0469(1982)039<0014:VDTWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1975: Oscillations in the winter stratosphere: Part 2. The role of horizontal eddy heat transport and the interaction of transient and stationary planetary scale waves. Mon. Wea. Rev., 103, 717729, doi:10.1175/1520-0493(1975)103<0717:OITWSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., , E. R. Nash, , and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring. J. Geophys. Res., 106, 19 99920 010, doi:10.1029/2000JD000061.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., , H. Nakamura, , and T. Miyasaka, 2009: Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric wudden warming events: A case study. Quart. J. Roy. Meteor. Soc., 135, 3952, doi:10.1002/qj.359.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pratt, R. W., 1976: The interpretation of space–time spectral quantities. J. Atmos. Sci., 33, 10601066, doi:10.1175/1520-0469(1976)033<1060:TIOSTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and R. R. Garcia, 1987: Vacillations induced by interference of stationary and traveling planetary waves. J. Atmos. Sci., 44, 26792711, doi:10.1175/1520-0469(1987)044<2679:VIBIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , N. A. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , M. Sigmond, , T. G. Shepherd, , and J. F. Scinocca, 2009: Sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. J. Climate, 22, 27262742, doi:10.1175/2009JCLI2688.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , J. F. Scinocca, , V. V. Kharin, , and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, doi:10.1038/ngeo1698.

    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., , and T. Birner, 2012: Transient tropospheric forcing of sudden stratospheric warmings. J. Atmos. Sci., 69, 34203432, doi:10.1175/JAS-D-11-0195.1.

    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., , and T. Birner, 2014: Stratospheric wave–mean flow feedbacks and sudden stratospheric warmings in a simple model forced by upward wave activity flux. J. Atmos. Sci., 71, 40554071, doi:10.1175/JAS-D-14-0113.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere–troposphere interactions. J. Geophys. Res., 117, D13107, doi:10.1029/2012JD017587.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , M. P. Baldwin, , and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and et al. , 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, doi:10.1002/qj.2432.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Watt-Meyer, O., , and P. J. Kushner, 2015: Decomposition of atmospheric disturbances into standing and traveling components, with application to Northern Hemisphere planetary waves and stratosphere–troposphere coupling. J. Atmos. Sci., 72, 787802, doi:10.1175/JAS-D-14-0214.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 9
PDF Downloads 37 37 4

The Role of Standing Waves in Driving Persistent Anomalies of Upward Wave Activity Flux

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

Northern Hemisphere stratospheric polar vortex strength variability is known to be largely driven by persistent anomalies in upward wave activity flux. It has also been shown that attenuation and amplification of the stationary wave is the primary way in which wave activity flux varies. This study determines the structure of the wave anomalies that interfere with the climatological wave and drive this variability. Using a recently developed spectral decomposition it is shown that fixed-node standing waves are the primary drivers of the “linear interference” phenomenon. This is particularly true for the low-frequency component of the upward wave activity flux. The linear part of the flux is shown to be more persistent than the total flux and has significant tropospheric standing wave precursors that lead changes in the strength of the stratospheric polar vortex. Evidence is presented that current-generation high-top climate models are able to credibly simulate this variability in wave activity fluxes and the connection to polar vortex strength. Finally, the precursors to displacement and split sudden stratospheric warmings are examined. Displacement events are found to be preceded by about 25 days of anomalously high upward wave activity flux forced by standing waves amplifying the climatology. Split events have more short-lived wave activity flux precursors, which are dominated by the nonlinear part of the flux.

Corresponding author address: Oliver Watt-Meyer, Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7, Canada. E-mail: oliverwm@atmosp.physics.utoronto.ca

Abstract

Northern Hemisphere stratospheric polar vortex strength variability is known to be largely driven by persistent anomalies in upward wave activity flux. It has also been shown that attenuation and amplification of the stationary wave is the primary way in which wave activity flux varies. This study determines the structure of the wave anomalies that interfere with the climatological wave and drive this variability. Using a recently developed spectral decomposition it is shown that fixed-node standing waves are the primary drivers of the “linear interference” phenomenon. This is particularly true for the low-frequency component of the upward wave activity flux. The linear part of the flux is shown to be more persistent than the total flux and has significant tropospheric standing wave precursors that lead changes in the strength of the stratospheric polar vortex. Evidence is presented that current-generation high-top climate models are able to credibly simulate this variability in wave activity fluxes and the connection to polar vortex strength. Finally, the precursors to displacement and split sudden stratospheric warmings are examined. Displacement events are found to be preceded by about 25 days of anomalously high upward wave activity flux forced by standing waves amplifying the climatology. Split events have more short-lived wave activity flux precursors, which are dominated by the nonlinear part of the flux.

Corresponding author address: Oliver Watt-Meyer, Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7, Canada. E-mail: oliverwm@atmosp.physics.utoronto.ca
Save