• Battisti, D. S., , and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1972: Large-scale atmospheric response to the 1964–65 Pacific equatorial warming. J. Phys. Oceanogr., 2, 212217, doi:10.1175/1520-0485(1972)002<0212:LSARTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, doi:10.1126/science.228.4703.1085.

    • Search Google Scholar
    • Export Citation
  • Clement, A., , P. DiNezio, , and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, doi:10.1175/2011JCLI3973.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, doi:10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi:10.1029/2010GL044888.

  • Dommenget, D., , and M. Latif, 2008: Generation of hyper climate modes. Geophys. Res. Lett., 35, L02706, doi:10.1029/2007GL031087.

  • Folland, C. K., , D. E. Parker, , A. Colman, , and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer-Verlag, 73–102, doi:10.1007/978-3-642-58369-8_4.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123, doi:10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., 1994: Decadal-scale climate variability in the 1970s and 1980s: Observations and model results. Climate Dyn., 10, 135162, doi:10.1007/BF00210626.

    • Search Google Scholar
    • Export Citation
  • Heddinghaus, T. R., , and A. F. Krueger, 1981: Annual and interannual variations in outgoing longwave radiation over the tropics. Mon. Wea. Rev., 109, 12081218, doi:10.1175/1520-0493(1981)109<1208:AAIVIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and et al. , 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454, 903995, doi:10.1098/rspa.1998.0193.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., , and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., , T. Motoi, , and H. Koide, 1999: SST variability and its mechanism in a coupled atmosphere–mixed layer ocean model. J. Climate, 12, 12211239, doi:10.1175/1520-0442(1999)012<1221:SVAIMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2133, doi:10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , S. G. H. Philander, , and M. J. Nath, 1992: Simulation of ENSO-like phenomena with a low-resolution coupled GCM of the global ocean and atmosphere. J. Climate, 5, 284307, doi:10.1175/1520-0442(1992)005<0284:SOELPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lombard, A., , A. Cazenave, , P.-Y. Le Traon, , and M. Ishii, 2005: Contribution of thermal expansion to present-day sea-level change revisited. Global Planet. Change, 47, 116, doi:10.1016/j.gloplacha.2004.11.016.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686, doi:10.1029/97GL00504.

    • Search Google Scholar
    • Export Citation
  • Nerem, R. S., , K. E. Rachlin, , and B. D. Beckley, 1997: Characterization of global mean sea level variations observed by TOPEX/Poseidon using empirical orthogonal functions. Surv. Geophys., 18, 293302, doi:10.1023/A:1006596211926.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356, doi:10.1175/JCLI4165.1.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67, 375383.

    • Search Google Scholar
    • Export Citation
  • Penland, C., , and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, doi:10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in the tropical sea surface temperature and surface wind fields associated with the Southern Oscillation–El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, doi:10.1029/2011GL047992.

  • Simmons, A. J., , J. M. Wallace, , and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988993, doi:10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. J. Shea, 1987: On the evolution of the Southern Oscillation. Mon. Wea. Rev., 115, 30783096, doi:10.1175/1520-0493(1987)115<3078:OTEOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and T. J. Hoar, 1997: El Niño and climate change. Geophys. Res. Lett., 24, 30573060, doi:10.1029/97GL03092.

  • Trenberth, K. E., , and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Troup, A. J., 1965: The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91, 490506, doi:10.1002/qj.49709139009.

  • Vimont, D. J., , D. S. Battisti, , and A. C. Hirst, 2002: Pacific interannual and interdecadal equatorial variability in a 1000-yr simulation of the CSIRO coupled general circulation model. J. Climate, 15, 160178, doi:10.1175/1520-0442(2002)015<0160:PIAIEV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter season. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Smith, , and Q. Jiang, 1990: Spatial patterns of atmosphere–ocean interaction in the northern winter. J. Climate, 3, 990998, doi:10.1175/1520-0442(1990)003<0990:SPOAOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , and N. E. Huang, 2004: A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. London, 460A, 15971611, doi:10.1098/rspa.2003.1221.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , J. Li, , and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, doi:10.1029/2010JC006501.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 147 28
PDF Downloads 117 117 26

ENSO-Like Variability: 1900–2013

View More View Less
  • 1 Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, China
  • | 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

ENSO-like variability is examined using a set of univariate indices based on unfiltered monthly global sea surface temperature (SST), sea level pressure (SLP), outgoing longwave radiation (OLR), sea level, and the three-dimensional ocean temperature (OT) fields. These indices, many of which correspond to the leading principal components (PCs) of the respective global fields, are highly correlated with each other. In combination with their spatial regression patterns, they provide a comprehensive description of ENSO-like variability in the atmosphere and ocean across time scales ranging from months to decades, from 1950 onward. The SLP and SST indices are highly correlated with one another back to the late nineteenth century. The interdecadal-scale shifts in the prevailing polarity of ENSO that occurred in the 1940s, the 1970s, and around the year 2000 are clearly evident in low-pass-filtered time series of these indices.

On the basis of empirical mode decomposition, ENSO-like variability is partitioned into an interannual “ENSO cycle,” to which equatorial ocean wave dynamics imparts a distinctive equatorial signature, and a red noise background continuum, most prominent on the interdecadal time scale, which resembles the ENSO-like variability in some models in which the atmosphere is coupled to a slab ocean. The background continuum bears the imprint of the Pacific–North American (PNA) pattern, the leading mode of the Northern Hemisphere wintertime variability of the atmospheric circulation over the Pacific sector. The superposition of the ENSO cycle and the background continuum imparts a distinctive frequency dependence to the patterns of ENSO-like climate variability.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0322.s1.

Corresponding author address: Xianyao Chen, Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, China. E-mail: chenxy@ouc.edu.cn

Abstract

ENSO-like variability is examined using a set of univariate indices based on unfiltered monthly global sea surface temperature (SST), sea level pressure (SLP), outgoing longwave radiation (OLR), sea level, and the three-dimensional ocean temperature (OT) fields. These indices, many of which correspond to the leading principal components (PCs) of the respective global fields, are highly correlated with each other. In combination with their spatial regression patterns, they provide a comprehensive description of ENSO-like variability in the atmosphere and ocean across time scales ranging from months to decades, from 1950 onward. The SLP and SST indices are highly correlated with one another back to the late nineteenth century. The interdecadal-scale shifts in the prevailing polarity of ENSO that occurred in the 1940s, the 1970s, and around the year 2000 are clearly evident in low-pass-filtered time series of these indices.

On the basis of empirical mode decomposition, ENSO-like variability is partitioned into an interannual “ENSO cycle,” to which equatorial ocean wave dynamics imparts a distinctive equatorial signature, and a red noise background continuum, most prominent on the interdecadal time scale, which resembles the ENSO-like variability in some models in which the atmosphere is coupled to a slab ocean. The background continuum bears the imprint of the Pacific–North American (PNA) pattern, the leading mode of the Northern Hemisphere wintertime variability of the atmospheric circulation over the Pacific sector. The superposition of the ENSO cycle and the background continuum imparts a distinctive frequency dependence to the patterns of ENSO-like climate variability.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0322.s1.

Corresponding author address: Xianyao Chen, Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, China. E-mail: chenxy@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 2.69 MB)
Save