• Anyah, R. O., , and W. Qiu, 2012: Characteristic 20th and 21st century precipitation and temperature patterns and changes over the Greater Horn of Africa. Int. J. Climatol., 32, 347363, doi:10.1002/joc.2270.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., , and Y. Ming, 2013: The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Climate Dyn., 40, 823838, doi:10.1007/s00382-012-1347-7.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , and T. Cowan, 2013: Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colas, F., , J. C. McWilliams, , X. Capet, , and J. Kurian, 2012: Heat balance and eddies in the Peru-Chile current system. Climate Dyn., 39, 509529, doi:10.1007/s00382-011-1170-6.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Funk, C., , M. D. Dettinger, , J. C. Michaelsen, , J. P. Verdin, , M. E. Brown, , M. Barlow, , and A. Hoell, 2008: Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA, 105, 11 08111 086, doi:10.1073/pnas.0708196105.

    • Search Google Scholar
    • Export Citation
  • Harris, I., , P. D. Jones, , T. J. Osborn, , and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Huang, B., , Z.-Z. Hu, , and B. Jha, 2007: Evolution of model systematic errors in the Tropical Atlantic Basin from coupled climate hindcasts. Climate Dyn., 28, 661682, doi:10.1007/s00382-006-0223-8.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and G. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

  • Kang, S. M., , R. Seager, , D. M. Frierson, , and X. Liu, 2015: Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere? Climate Dyn., 44, 14571472, doi:10.1007/s00382-014-2147-z.

    • Search Google Scholar
    • Export Citation
  • Levine, R. C., , A. G. Turner, , D. Marathayil, , and G. M. Martin, 2013: The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Climate Dyn., 41, 155172, doi:10.1007/s00382-012-1656-x.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and S. P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , S.-P. Xie, , and Y. Du, 2015: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 30583072, doi:10.1175/JCLI-D-14-00740.1.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C., and et al. , 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, doi:10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Otieno, V. O., , and R. O. Anyah, 2013a: CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part I: Contemporary climate. Climate Dyn., 41, 20812097, doi:10.1007/s00382-012-1549-z.

    • Search Google Scholar
    • Export Citation
  • Otieno, V. O., , and R. O. Anyah, 2013b: CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part II: Projected climate. Climate Dyn., 41, 20992113, doi:10.1007/s00382-013-1694-z.

    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., , P. Terray, , S. Masson, , T. Izumo, , T. Tozuka, , and T. Yamagata, 2014: Impacts of Indian Ocean SST biases on the Indian Monsoon: As simulated in a global coupled model. Climate Dyn., 42, 271290, doi:10.1007/s00382-013-1671-6.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., , A. Becker, , U. Schneider, , A. Meyer-Christoffer, , and M. Ziese, 2010: GPCC status report December 2010. GPCC Rep., 7 pp. [Available online at http://www.dwd.de/DE/leistungen/wzn/publikationen/GPCC_status_report_2010.pdf?__blob=publicationFile&v=2.]

  • Schneider, E. K., 1996: A note on the annual cycle of sea surface temperature at the equator. COLA Rep. 36, 16 pp. [Available online at ftp://cola.gmu.edu/pub/ctr/ctr_36.pdf.]

  • Shongwe, M. E., , G. J. van Oldenborgh, , B. van den Hurk, , and M. van Aalst, 2011: Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J. Climate, 24, 37183733, doi:10.1175/2010JCLI2883.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , L. Zhang, , S.-K. Lee, , L. Wu, , and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., , and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dyn., 37, 24172435, doi:10.1007/s00382-010-0984-y.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, W., , R. Seager, , M. A. Cane, , and B. Lyon, 2014: The East African long rains in observations and models. J. Climate, 27, 71857202, doi:10.1175/JCLI-D-13-00447.1.

    • Search Google Scholar
    • Export Citation
  • Yang, W., , R. Seager, , M. A. Cane, , and B. Lyon, 2015: The annual cycle of East African precipitation. J. Climate, 28, 23852404, doi:10.1175/JCLI-D-14-00484.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 145 24
PDF Downloads 135 135 20

The Rainfall Annual Cycle Bias over East Africa in CMIP5 Coupled Climate Models

View More View Less
  • 1 Department of Earth System Science, University of California, Irvine, Irvine, California
  • | 2 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 3 International Research Institute for Climate and Society, The Earth Institute, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

East Africa has two rainy seasons: the long rains [March–May (MAM)] and the short rains [October–December (OND)]. Most CMIP3/5 coupled models overestimate the short rains while underestimating the long rains. In this study, the East African rainfall bias is investigated by comparing the coupled historical simulations from CMIP5 to the corresponding SST-forced AMIP simulations. Much of the investigation is focused on the MRI-CGCM3 model, which successfully reproduces the observed rainfall annual cycle in East Africa in the AMIP experiment but its coupled historical simulation has a similar but stronger bias as the coupled multimodel mean. The historical–AMIP monthly climatology rainfall bias in East Africa can be explained by the bias in the convective instability (CI), which is dominated by the near-surface moisture static energy (MSE) and ultimately by the MSE’s moisture component. The near-surface MSE bias is modulated by the sea surface temperature (SST) over the western Indian Ocean. The warm SST bias in OND can be explained by both insufficient ocean dynamical cooling and latent flux, while the insufficient shortwave radiation and excess latent heat flux mainly contribute to the cool SST bias in MAM.

Corresponding author address: Wenchang Yang, 2101F Croul Hall, Irvine, CA 92697. E-mail: yang.wenchang@uci.edu

Abstract

East Africa has two rainy seasons: the long rains [March–May (MAM)] and the short rains [October–December (OND)]. Most CMIP3/5 coupled models overestimate the short rains while underestimating the long rains. In this study, the East African rainfall bias is investigated by comparing the coupled historical simulations from CMIP5 to the corresponding SST-forced AMIP simulations. Much of the investigation is focused on the MRI-CGCM3 model, which successfully reproduces the observed rainfall annual cycle in East Africa in the AMIP experiment but its coupled historical simulation has a similar but stronger bias as the coupled multimodel mean. The historical–AMIP monthly climatology rainfall bias in East Africa can be explained by the bias in the convective instability (CI), which is dominated by the near-surface moisture static energy (MSE) and ultimately by the MSE’s moisture component. The near-surface MSE bias is modulated by the sea surface temperature (SST) over the western Indian Ocean. The warm SST bias in OND can be explained by both insufficient ocean dynamical cooling and latent flux, while the insufficient shortwave radiation and excess latent heat flux mainly contribute to the cool SST bias in MAM.

Corresponding author address: Wenchang Yang, 2101F Croul Hall, Irvine, CA 92697. E-mail: yang.wenchang@uci.edu
Save