• Alley, R. B., 2000: The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev., 19, 213226, doi:10.1016/S0277-3791(99)00062-1.

    • Search Google Scholar
    • Export Citation
  • Araya-Melo, P. A., , M. Crucifix, , and N. Bounceur, 2015: Global sensitivity analysis of the Indian monsoon during the Pleistocene. Climate Past, 11, 4561, doi:10.5194/cp-11-45-2015.

    • Search Google Scholar
    • Export Citation
  • Bartlein, P. J., and et al. , 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775802, doi:10.1007/s00382-010-0904-1.

    • Search Google Scholar
    • Export Citation
  • Berger, A., , and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10, 297317, doi:10.1016/0277-3791(91)90033-Q.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , G. Bellon, , S. Klocke, , S. Sherwood, , S. Fermepin, , and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and et al. , 2007a: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, doi:10.5194/cp-3-261-2007.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and et al. , 2007b: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296, doi:10.5194/cp-3-279-2007.

    • Search Google Scholar
    • Export Citation
  • Brady, E. C., , B. L. Otto-Bliesner, , J. E. Kay, , and N. Rosenbloom, 2013: Sensitivity to glacial forcing in the CCSM4. J. Climate, 26, 19011925, doi:10.1175/JCLI-D-11-00416.1.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , and S. Manabe, 1987: The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dyn., 1, 8799, doi:10.1007/BF01054478.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , K. A. Dahl, , and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Bush, A. B. G., , and R. G. Fairbanks, 2003: Exposing the Sunda shelf: Tropical responses to eustatic sea level change. J. Geophys. Res., 108, 4446, doi:10.1029/2002JD003027.

    • Search Google Scholar
    • Export Citation
  • Cheng, H., , A. Sinha, , X. Wang, , F. W. Cruz, , and R. L. Edwards, 2012: The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dyn., 39, 10451062, doi:10.1007/s00382-012-1363-7.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., , and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, doi:10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dokken, T. M., , K. H. Nisancioglu, , C. Li, , D. S. Battisti, , and C. Kissel, 2013: Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography, 28, 491502, doi:10.1002/palo.20042.

    • Search Google Scholar
    • Export Citation
  • Erb, M. P., , A. J. Broccoli, , and A. C. Clement, 2013: The contribution of radiative feedbacks to orbitally driven climate change. J. Climate, 26, 58975914, doi:10.1175/JCLI-D-12-00419.1.

    • Search Google Scholar
    • Export Citation
  • Erb, M. P., , A. J. Broccoli, , N. T. Graham, , A. C. Clement, , A. T. Wittenberg, , and G. A. Vecchi, 2015: Response of the equatorial Pacific seasonal cycle to orbital forcing. J. Climate, doi:10.1175/JCLI-D-15-0242.1, in press.

    • Search Google Scholar
    • Export Citation
  • Felzer, B., , T. Webb III, , and R. J. Oglesby, 1998: The impact of ice sheets, CO2, and orbital insolation on late quaternary climates: Sensitivity experiments with a general circulation model. Quat. Sci. Rev., 17, 507534, doi:10.1016/S0277-3791(98)00010-9.

    • Search Google Scholar
    • Export Citation
  • Hays, J. D., , J. Imbrie, , and N. J. Shackleton, 1976: Variations in the earth’s orbit: Pacemaker of the ice ages. Science, 194, 11211132, doi:10.1126/science.194.4270.1121.

    • Search Google Scholar
    • Export Citation
  • He, F., , J. D. Shakun, , P. U. Clark, , A. E. Carlson, , Z. Liu, , B. L. Otto-Bliesner, , and J. E. Kutzbach, 2013: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494, 8185, doi:10.1038/nature11822.

    • Search Google Scholar
    • Export Citation
  • He, J., , B. J. Soden, , and B. Kirtman, 2014: The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett., 41, 26142622, doi:10.1002/2014GL059435.

    • Search Google Scholar
    • Export Citation
  • Henrot, A.-J., , L. François, , S. Brewer, , and G. Munhoven, 2009: Impacts of land surface properties and atmospheric CO2 on the Last Glacial Maximum climate: A factor separation analysis. Climate Past, 5, 183202, doi:10.5194/cp-5-183-2009.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., , and A. J. Broccoli, 2003: Orbital forcing of Arctic climate: Mechanisms of climate response and implications for continental glaciation. Climate Dyn., 21, 539557, doi:10.1007/s00382-003-0351-3.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., , O. Marchal, , Y. Liu, , S. Lu, , and W. G. Thompson, 2010: A box model test of the freshwater forcing hypothesis of abrupt climate change and the physics governing ocean stability. Paleoceanography, 25, PA4222, doi:10.1029/2010PA001936.

  • Joussaume, S., , and P. Braconnot, 1997: Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res., 102, 19431956, doi:10.1029/96JD01989.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1981: Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 214, 5961, doi:10.1126/science.214.4516.59.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., , and B. L. Otto-Bliesner, 1982: The sensitivity of the African–Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39, 11771188, doi:10.1175/1520-0469(1982)039<1177:TSOTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., , and P. J. Guetter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. J. Atmos. Sci., 43, 17261759, doi:10.1175/1520-0469(1986)043<1726:TIOCOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., , X. Liu, , Z. Liu, , and G. Chen, 2008: Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Climate Dyn., 30, 567579, doi:10.1007/s00382-007-0308-z.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., , F. He, , S. J. Vavrus, , and W. F. Ruddiman, 2013: The dependence of equilibrium climate sensitivity on climate state: Application to studies of climates colder than present. Geophys. Res. Lett., 40, 37213726, doi:10.1002/grl.50724.

    • Search Google Scholar
    • Export Citation
  • Laîné, A., , M. Kageyama, , P. Braconnot, , and R. Alkama, 2009: Impact of greenhouse gas concentration changes on surface energetics in IPSL-CM4: Regional warming patterns, land–sea warming ratios, and glacial–interglacial differences. J. Climate, 22, 46214635, doi:10.1175/2009JCLI2771.1.

    • Search Google Scholar
    • Export Citation
  • Lea, D. W., 2004: The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. J. Climate, 17, 21702179, doi:10.1175/1520-0442(2004)017<2170:TYCITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lea, D. W., , D. K. Pak, , and H. J. Spero, 2000: Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science, 289, 17191724, doi:10.1126/science.289.5485.1719.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-Y., , J. C. H. Chiang, , and P. Chang, 2015: Tropical Pacific response to continental ice sheet topography. Climate Dyn., 44, 24292446, doi:10.1007/s00382-014-2162-0.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Lisiecki, L. E., , and P. A. Lisiecki, 2002: Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography, 17, 1049, doi:10.1029/2001PA000733.

    • Search Google Scholar
    • Export Citation
  • Lisiecki, L. E., , and M. E. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.

  • Liu, Z., , S. P. Harrison, , J. Kutzbach, , and B. Otto-Bliesner, 2004: Global monsoons in the mid-Holocene and oceanic feedback. Climate Dyn., 22, 157182, doi:10.1007/s00382-003-0372-y.

    • Search Google Scholar
    • Export Citation
  • Lu, Z., , Z. Liu, , and J. Zhu, 2015: Abrupt intensification of ENSO forced by deglacial ice-sheet retreat in CCSM3. Climate Dyn., doi:10.1007/s00382-015-2681-3, in press.

  • Mantsis, D. F., , A. C. Clement, , A. J. Broccoli, , and M. P. Erb, 2011: Climate feedbacks in response to changes in obliquity. J. Climate, 24, 28302845, doi:10.1175/2010JCLI3986.1.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., , A. C. Clement, , B. Kirtman, , A. J. Broccoli, , and M. P. Erb, 2013: Precessional cycles and their influence on the North Pacific and North Atlantic summer anticyclones. J. Climate, 26, 45964611, doi:10.1175/JCLI-D-12-00343.1.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., , B. R. Lintner, , A. J. Broccoli, , M. P. Erb, , A. C. Clement, , and H.-S. Park, 2014: The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Climate, 27, 55045516, doi:10.1175/JCLI-D-13-00526.1.

    • Search Google Scholar
    • Export Citation
  • Marcott, S. A., , J. D. Shakun, , P. U. Clark, , and A. C. Mix, 2013: A reconstruction of regional and global temperature for the past 11,300 years. Science, 339, 11981201, doi:10.1126/science.1228026.

    • Search Google Scholar
    • Export Citation
  • Marzin, C., , and P. Braconnot, 2009: Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5 kyr BP. Climate Dyn., 33, 215231, doi:10.1007/s00382-009-0538-3.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., , E. J. Highwood, , K. P. Shine, , and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 27152718, doi:10.1029/98GL01908.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., , C. D. Hewitt, , T. M. Marchitto, , E. Brady, , A. Abe-Ouchi, , M. Crucifix, , S. Murakami, , and S. L. Weber, 2007: Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett., 34, L12706, doi:10.1029/2007GL029475.

    • Search Google Scholar
    • Export Citation
  • PALAEOSENS Project Members, 2012: Making sense of palaeoclimate sensitivity. Nature, 491, 683691, doi:10.1038/nature11574.

  • Partridge, T. C., , P. B. Demenocal, , S. A. Lorentz, , M. J. Paiker, , and J. C. Vogel, 1997: Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria Saltpan. Quat. Sci. Rev., 16, 11251133, doi:10.1016/S0277-3791(97)00005-X.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, doi:10.1146/annurev.earth.32.082503.144359.

    • Search Google Scholar
    • Export Citation
  • Petit, J. R., and et al. , 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436, doi:10.1038/20859.

    • Search Google Scholar
    • Export Citation
  • Phillipps, P. J., , and I. M. Held, 1994: The response of orbital perturbations in an atmospheric model coupled to a slab ocean. J. Climate, 7, 767782, doi:10.1175/1520-0442(1994)007<0767:TRTOPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., , and D. B. Reusch, 2002: A calendar conversion method of monthly mean paleoclimate model output with orbital forcing. J. Geophys. Res., 107, 4615, doi:10.1029/2002JD002126.

    • Search Google Scholar
    • Export Citation
  • Prell, W. L., , and J. E. Kutzbach, 1987: Monsoon variability over the past 150,000 years. J. Geophys. Res., 92, 84118425, doi:10.1029/JD092iD07p08411.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and et al. , 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

  • Reichler, T., , and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303–311, doi:10.1175/BAMS-89-3-303.

  • Rohling, E. J., , K. Grant, , M. Bolshaw, , A. P. Roberts, , M. Siddall, , Ch. Hemleben, , and M. Kucera, 2009: Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci., 2, 500504, doi:10.1038/ngeo557.

    • Search Google Scholar
    • Export Citation
  • Rohling, E. J., , K. Braun, , K. Grant, , M. Kucera, , A. P. Roberts, , M. Siddall, , and G. Trommer, 2010: Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth Planet. Sci. Lett., 291, 97105, doi:10.1016/j.epsl.2009.12.054.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2014: Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate Past, 10, 221250, doi:10.5194/cp-10-221-2014.

    • Search Google Scholar
    • Export Citation
  • Singarayer, J. S., , and P. J. Valdes, 2010: High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quat. Sci. Rev., 29, 4355, doi:10.1016/j.quascirev.2009.10.011.

    • Search Google Scholar
    • Export Citation
  • Stein, U., , and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115, doi:10.1175/1520-0469(1993)050<2107:FSINS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , and J. Yoshimura, 2004: A mechanism of tropical precipitation change due to CO2 increase. J. Climate, 17, 238243, doi:10.1175/1520-0442(2004)017<0238:AMOTPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , B. Dong, , and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

  • Timmermann, A., , O. Timm, , L. Stott, , and L. Menviel, 2009: The roles of CO2 and orbital forcing in driving Southern Hemispheric temperature variations during the last 21 000 yr. J. Climate, 22, 16261640, doi:10.1175/2008JCLI2161.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and et al. , 2008: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451, 10901093, doi:10.1038/nature06692.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., and et al. , 2008: Mid- to late Holocene climate change: An overview. Quat. Sci. Rev., 27, 17911828, doi:10.1016/j.quascirev.2008.06.013.

    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and et al. , 2007: The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate Past, 3, 5164, doi:10.5194/cp-3-51-2007.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Yin, Q. Z., , and A. Berger, 2010: Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event. Nat. Geosci., 3, 243–246, doi:10.1038/ngeo771.

  • Yin, Q. Z., , and A. Berger, 2012: Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dyn., 38, 709724, doi:10.1007/s00382-011-1013-5.

    • Search Google Scholar
    • Export Citation
  • Yin, Q. Z., , A. Berger, , and M. Crucifix, 2009: Individual and combined effects of ice sheets and precession of MIS-13 climate. Climate Past, 5, 229243, doi:10.5194/cp-5-229-2009.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , G. Lohmann, , G. Knorr, , and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, doi:10.1038/nature13592.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., , and S. P. Harrison, 2012: Mid-Holocene monsoons: A multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Climate Dyn., 39, 14571487, doi:10.1007/s00382-011-1193-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 7
PDF Downloads 43 43 6

Using Single-Forcing GCM Simulations to Reconstruct and Interpret Quaternary Climate Change

View More View Less
  • 1 Institute for Geophysics, The University of Texas at Austin, Austin, Texas
  • | 2 Department of Environmental Sciences, and Institute of Earth, Ocean and Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
© Get Permissions
Restricted access

Abstract

The long-term climate variations of the Quaternary were primarily influenced by concurrent changes in Earth’s orbit, greenhouse gases, and ice sheets. However, because climate changes over the coming century will largely be driven by changes in greenhouse gases alone, it is important to better understand the separate contributions of each of these forcings in the past. To investigate this, idealized equilibrium simulations are conducted in which the climate is driven by separate changes in obliquity, precession, CO2, and ice sheets. To test the linearity of past climate change, anomalies from these single-forcing experiments are scaled and summed to compute linear reconstructions of past climate, which are then compared to mid-Holocene and last glacial maximum (LGM) snapshot simulations, where all forcings are applied together, as well as proxy climate records. This comparison shows that much of the climate response may be approximated as a linear response to forcings, while some features, such as modeled changes in sea ice and Atlantic meridional overturning circulation (AMOC), appear to be heavily influenced by nonlinearities. In regions where the linear reconstructions replicate the full-forcing experiments well, this analysis can help identify how each forcing contributes to the climate response. Monsoons at the mid-Holocene respond strongly to precession, while LGM monsoons are heavily influenced by the altered greenhouse gases and ice sheets. Contrary to previous studies, ice sheets produce pronounced tropical cooling at the LGM. Compared to proxy temperature records, the linear reconstructions replicate long-term changes well and also show which climate variations are not easily explained as direct responses to long-term forcings.

Corresponding author address: Michael P. Erb, Institute for Geophysics, The University of Texas at Austin, J. J. Pickle Research Campus, Bldg. 196, 10100 Burnet Rd., Austin, TX 78758. E-mail: merb@ig.utexas.edu

Abstract

The long-term climate variations of the Quaternary were primarily influenced by concurrent changes in Earth’s orbit, greenhouse gases, and ice sheets. However, because climate changes over the coming century will largely be driven by changes in greenhouse gases alone, it is important to better understand the separate contributions of each of these forcings in the past. To investigate this, idealized equilibrium simulations are conducted in which the climate is driven by separate changes in obliquity, precession, CO2, and ice sheets. To test the linearity of past climate change, anomalies from these single-forcing experiments are scaled and summed to compute linear reconstructions of past climate, which are then compared to mid-Holocene and last glacial maximum (LGM) snapshot simulations, where all forcings are applied together, as well as proxy climate records. This comparison shows that much of the climate response may be approximated as a linear response to forcings, while some features, such as modeled changes in sea ice and Atlantic meridional overturning circulation (AMOC), appear to be heavily influenced by nonlinearities. In regions where the linear reconstructions replicate the full-forcing experiments well, this analysis can help identify how each forcing contributes to the climate response. Monsoons at the mid-Holocene respond strongly to precession, while LGM monsoons are heavily influenced by the altered greenhouse gases and ice sheets. Contrary to previous studies, ice sheets produce pronounced tropical cooling at the LGM. Compared to proxy temperature records, the linear reconstructions replicate long-term changes well and also show which climate variations are not easily explained as direct responses to long-term forcings.

Corresponding author address: Michael P. Erb, Institute for Geophysics, The University of Texas at Austin, J. J. Pickle Research Campus, Bldg. 196, 10100 Burnet Rd., Austin, TX 78758. E-mail: merb@ig.utexas.edu
Save