• Adler, R., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, M., , and W. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., , D. Dommenget, , T. Martin, , and S. Power, 2014: The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Climate Dyn., 43, 27472763, doi:10.1007/s00382-014-2091-y.

    • Search Google Scholar
    • Export Citation
  • Bonfils, C., , and B. D. Santer, 2011: Investigating the possibility of a human component in various Pacific decadal oscillation indices. Climate Dyn., 37, 14571468, doi:10.1007/s00382-010-0920-1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2015: Increased frequency of extreme La Niña events under greenhouse warming. Nat. Climate Change, 5, 132137, doi:10.1038/nclimate2492.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2015: Atmospheric science: Extreme La Niña events to increase. Nat. Climate Change, 5, 100101, doi:10.1038/nclimate2509.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , and M. Alexander, 2010: Relationship between precipitation in the Great Plains of the United States and global SSTs: Insights from the IPCC AR4 models. J. Climate, 23, 29412958, doi:10.1175/2009JCLI3291.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , Y.-G. Ham, , A. Wittenberg, , and J.-S. Kug, 2015a: Climate model biases and El Niño Southern Oscillation (ENSO) simulation. U.S. CLIVAR Variations, No. 13, U.S. CLIVAR Project Office, Washington, DC, 21–25.

  • Capotondi, A., and et al. , 2015b: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chung, C., , S. Power, , J. Arblaster, , H. Rashid, , and G. Roff, 2014: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 18371856, doi:10.1007/s00382-013-1892-8.

    • Search Google Scholar
    • Export Citation
  • Coats, S., , J. E. Smerdon, , B. I. Cook, , and R. Seager, 2013: Stationarity of the tropical Pacific teleconnection to North America in CMIP5/PMIP3 model simulations. Geophys. Res. Lett., 40, 49274932, doi:10.1002/grl.50938.

    • Search Google Scholar
    • Export Citation
  • Coelho, C., , and L. Goddard, 2009: El Niño–induced tropical droughts in climate change projections. J. Climate, 22, 64566476, doi:10.1175/2009JCLI3185.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Compo, G., , and P. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, doi:10.1175/2009JCLI2735.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and T. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, doi:10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , K. Trenberth, , and T. Qian, 2004: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, doi:10.1175/JHM-386.1.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and et al. , 2009: Understanding El Niño in ocean–atmosphere general circulation models—Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325, doi:10.1175/2008BAMS2387.1.

    • Search Google Scholar
    • Export Citation
  • Held, I., , and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., , S. Xie, , K. Hu, , G. Huang, , and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, doi:10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., , and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19, 43604377, doi:10.1175/JCLI3846.1.

    • Search Google Scholar
    • Export Citation
  • Kao, H., , and J. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K., , R. Seager, , A. Kaplan, , Y. Kushnir, , and M. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 43164321, doi:10.1175/2009JCLI2936.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J., , S. An, , Y. Ham, , and I. Kang, 2010: Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theor. Appl. Climatol., 100, 275282, doi:10.1007/s00704-009-0183-0.

    • Search Google Scholar
    • Export Citation
  • Langenbrunner, B., , and J. Neelin, 2013: Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation. J. Climate, 26, 44314446, doi:10.1175/JCLI-D-12-00542.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., , S. Lee, , and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, doi:10.1038/nclimate1840.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Marvel, K., , and C. Bonfils, 2013: Identifying external influences on global precipitation. Proc. Natl. Acad. Sci. USA, 110, 19 30119 306, doi:10.1073/pnas.1314382110.

    • Search Google Scholar
    • Export Citation
  • Mears, C., , B. Santer, , F. Wentz, , K. Taylor, , and M. Wehner, 2007: Relationship between temperature and precipitable water changes over tropical oceans. Geophys. Res. Lett., 34, L24709, doi:10.1029/2007GL031936.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., , and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779790, doi:10.1007/s00382-007-0268-3.

    • Search Google Scholar
    • Export Citation
  • Peters, G., and et al. , 2013: The challenge to keep global warming below 2°C. Nat. Climate Change, 3, 46, doi:10.1038/nclimate1783.

    • Search Google Scholar
    • Export Citation
  • Power, S., , F. Delage, , C. Chung, , G. Kociuba, , and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541, doi:10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., and et al. , 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469, doi:10.1175/JCLI3637.1.

    • Search Google Scholar
    • Export Citation
  • Ruff, T., , Y. Kushnir, , and R. Seager, 2012: Comparing twentieth- and twenty-first-century patterns of interannual precipitation variability over the western United States and northern Mexico. J. Hydrometeor., 13, 366378, doi:10.1175/JHM-D-10-05003.1.

    • Search Google Scholar
    • Export Citation
  • Sandeep, S., , F. Stordal, , P. Sardeshmukh, , and G. Compo, 2014: Pacific Walker circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103117, doi:10.1007/s00382-014-2135-3.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2009: Incorporating model quality information in climate change detection and attribution studies. Proc. Natl. Acad. Sci. USA, 106, 14 77814 783, doi:10.1073/pnas.0901736106.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., and et al. , 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Naik, , and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, doi:10.1175/JCLI-D-11-00363.1.

    • Search Google Scholar
    • Export Citation
  • Seidel, D., , Q. Fu, , W. Randel, , and T. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Smith, T., , R. Reynolds, , T. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, doi:10.1038/nclimate1591.

    • Search Google Scholar
    • Export Citation
  • Sperber, K., , and D. Kim, 2012: Simplified metrics for the identification of the Madden–Julian oscillation in models. Atmos. Sci. Lett., 13, 187193, doi:10.1002/asl.378.

    • Search Google Scholar
    • Export Citation
  • Sperber, K., , S. Gualdi, , S. Legutke, , and V. Gayler, 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25, 117140, doi:10.1007/s00382-005-0026-3.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, doi:10.1029/2012GL052759.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., , B. Fox-Kemper, , M. Jochum, , R. Neale, , C. Deser, , and G. Meehl, 2012: Will there be a significant change to El Niño in the twenty-first century? J. Climate, 25, 21292145, doi:10.1175/JCLI-D-11-00252.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., , R. Stouffer, , and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S.-P. Xie, , C. Deser, , Y. Kosaka, , and Y. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, doi:10.1038/nature11576.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., , J. Fasullo, , and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., , and A. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, doi:10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., , B. Soden, , A. Wittenberg, , I. Held, , A. Leetmaa, , and M. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , Y. Kamae, , and M. Kimoto, 2014: Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate. Geophys. Res. Lett., 41, 32273232, doi:10.1002/2014GL059692.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A., 2015: Low-frequency variations of ENSO. U.S. CLIVAR Variations, No. 13, U.S. CLIVAR Project Office, Washington, DC, 26–31.

  • Xie, S., , C. Deser, , G. Vecchi, , J. Ma, , H. Teng, , and A. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S., , J. Kug, , B. Dewitte, , M. Kwon, , B. Kirtman, , and F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z., , S. Xie, , X. Zheng, , Q. Liu, , and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, doi:10.1175/JCLI-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 16
PDF Downloads 76 76 11

Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

View More View Less
  • 1 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
  • | 3 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
  • | 4 University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0341.s1.

Current affiliation: NASA Goddard Institute for Space Studies, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York.

Corresponding author address: Céline J. W. Bonfils, Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, P.O. Box 808, Mail Stop L-103, Livermore, CA 94550. E-mail: bonfils2@llnl.gov

Abstract

El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0341.s1.

Current affiliation: NASA Goddard Institute for Space Studies, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York.

Corresponding author address: Céline J. W. Bonfils, Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, P.O. Box 808, Mail Stop L-103, Livermore, CA 94550. E-mail: bonfils2@llnl.gov

Supplementary Materials

    • Supplemental Materials (DOCX 16.77 MB)
Save