• Cao, J., , L. Wu, , and W. Pan, 2012: Simulated seasonal activity of tropical cyclones over the western North Pacific during July–September 2006. J. Nanjing Inst. Meteor., 35, 148162.

    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., , C. G. Jones, , and K. Winger, 2011: Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity. Climate Dyn., 37, 869892, doi:10.1007/s00382-010-0846-7.

    • Search Google Scholar
    • Export Citation
  • Carrasco, C., , C. Landsea, , and Y. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, doi:10.1175/WAF-D-13-00092.1.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., , and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, doi:10.1175/MWR-D-10-05062.1.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., , and J. C. L. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 22352248, doi:10.1002/qj.2292.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., , and J. C. L. Chan, 2015: Global climatology of tropical cyclone size as inferred from QuikSCAT data. Quart. J. Roy. Meteor. Soc., doi:10.1002/joc.4307, in press.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , J. F. Price, , W. Zhao, , M. A. Donelan, , and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317, doi:10.1175/BAMS-88-3-311.

    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., , and W. M. Gray, 2002: Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130, 19892005, doi:10.1175/1520-0493(2002)130<1989:VOTOWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and et al. , 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , R. F. Rogers, , F. D. Marks, , and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF–ARW model. Mon. Wea. Rev., 137, 37173743, doi:10.1175/2009MWR2946.1.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449, doi:10.1175/2010JAS3523.1.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., , and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, doi:10.1007/BF01277501.

  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, doi:10.1002/qj.49711046510.

    • Search Google Scholar
    • Export Citation
  • Iman, R. L., , M. E. Johnson, , and C. C. Watson, 2005: Sensitivity analysis for computer model projections of hurricane losses. Risk Anal., 25, 12771297, doi:10.1111/j.1539-6924.2005.00673.x.

    • Search Google Scholar
    • Export Citation
  • Irish, J. L., , D. T. Resio, , and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, doi:10.1175/2008JPO3727.1.

    • Search Google Scholar
    • Export Citation
  • Jin, C.-S., , C.-H. Ho, , J.-H. Kim, , D.-K. Lee, , D.-H. Cha, , and S.-W. Yeh, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J. Climate, 26, 25342545, doi:10.1175/JCLI-D-12-00287.1.

    • Search Google Scholar
    • Export Citation
  • Kilroy, G., , R. K. Smith, , and M. T. Montgomery, 2015: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? Tropical Cyclone Research Rep. TCRR 2, Meteorological Institute, Ludwig Maximilians University of Munich, 16 pp.

  • Kim, D., , C. S. Jin, , C. H. Ho, , J. Kim, , and J. H. Kim, 2015: Climatological features of WRF-simulated tropical cyclones over the western North Pacific. Climate Dyn., 44, 32233235, doi:10.1007/s00382-014-2410-3.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., , G. A. Vecchi, , T. Knutson, , W. G. Anderson, , T. L. Delworth, , A. Rosati, , F. Zeng, , and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., , and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, doi:10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , and C. R. Sampson, 2015: After a decade are Atlantic tropical cyclone gale force wind radii forecasts now skillful? Wea. Forecasting, 30, 702709, doi:10.1175/WAF-D-14-00149.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , C. R. Sampson, , M. DeMaria, , T. P. Marchok, , J. M. Gross, , and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781791, doi:10.1175/WAF1026.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , M. DeMaria, , D. A. Molenar, , C. R. Sampson, , and M. G. Seybold, 2011: An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol, 50, 21492166, doi:10.1175/2011JAMC2673.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , M. DeMaria, , S. Longmore, , and R. T. DeMaria, 2014a: Improving tropical cyclone guidance tools by accounting for variations in size. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA., Amer. Meteor. Soc., 51. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper244165.html.]

  • Knaff, J. A., , S. P. Longmore, , and D. A. Molenar, 2014b: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , J. A. Knaff, , H. I. Berger, , D. C. Herndon, , T. A. Cram, , C. S. Velden, , R. J. Murnane, , and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654, doi:10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-S., , K. K. W. Cheung, , W.-T. Fang, , and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223, doi:10.1175/2010MWR3023.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , M. Zhao, , and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun., 6, 6591, doi:10.1038/ncomms7591.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., , and J. C. L. Chan, 2002: Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Wea. Rev., 130, 21342142, doi:10.1175/1520-0493(2002)130<2134:SFPAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, doi:10.1175/2008MWR2268.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , J. L. Holloway, , and H. M. Stone, 1970: Tropical circulation on a time integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580613, doi:10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and et al. , 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, doi:10.1175/JCLI-D-11-00346.1.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moyer, A. C., , J. L. Evans, , and M. Powell, 2007: Comparison of observed gale radius statistics. Meteor. Atmos. Phys., 97, 4155, doi:10.1007/s00703-006-0243-2.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, doi:10.1175/2010JCLI3338.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, doi:10.1175/2010JCLI3723.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and et al. , 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , C. W. Schmidt, , and M. T. Montgomery, 2011: An investigation of rotational influences on tropical-cyclone size and intensity. Quart. J. Roy. Meteor. Soc., 137, 18411855, doi:10.1002/qj.862.

    • Search Google Scholar
    • Export Citation
  • Stowasser, M., , Y. Wang, , and K. Hamilton, 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. J. Climate, 20, 23782396, doi:10.1175/JCLI4126.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 10321043, doi:10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 10441056, doi:10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , S. A. Braun, , J. Halverson, , and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586, doi:10.1175/JAS3597.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , J. Liang, , and C.-C. Wu, 2011a: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 22082221, doi:10.1175/2011JAS3730.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , H. Zong, , and J. Liang, 2011b: Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. J. Atmos. Sci., 68, 30123031, doi:10.1175/2010JAS3559.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , Z. Ni, , J. Duan, , and H. Zong, 2013: Sudden tropical cyclone track changes over western North Pacific: A composite study. Mon. Wea. Rev., 141, 25972610, doi:10.1175/MWR-D-12-00224.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2010a: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, doi:10.1175/2010MWR3335.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2010b: Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, doi:10.1175/2010JAS3387.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Wea. Forecasting, 30, 692701, doi:10.1175/WAF-D-14-00141.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 16
PDF Downloads 81 81 20

Implications of the Observed Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific

View More View Less
  • 1 Pacific Typhoon Research Center and Key Laboratory of Meteorological Disaster of Ministry of Education, University of Information Science and Technology, Nanjing, China
  • | 2 NOAA Center for Satellite Applications and Research, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Tropical cyclone (TC) size, usually measured with the radius of gale force wind (34 kt or 17 m s−1), is an important parameter for estimating TC risks such as wind damage, rainfall distribution, and storm surge. Previous studies have reported that there is a very weak relationship between TC size and TC intensity. A close examination presented here using satellite-based wind analyses suggests that the relationship between TC size and intensity is nonlinear. TC size generally increases with increasing TC maximum sustained wind before a maximum of 2.50° latitude at an intensity of 103 kt or 53.0 m s−1 and then slowly decreases as the TC intensity further increases. The observed relationship between TC size and intensity is compared to the relationships produced by an 11-yr seasonal numerical simulation of TC activity. The numerical simulations were able to produce neither the observed maximum sustained winds nor the observed nonlinear relationship between TC size and intensity. This finding suggests that TC size cannot reasonably be simulated with 9-km horizontal resolution and increased resolution is needed to study TC size variations using numerical simulations.

Corresponding author address: Prof. Liguang Wu, Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China. E-mail: liguang@nuist.edu.cn

Abstract

Tropical cyclone (TC) size, usually measured with the radius of gale force wind (34 kt or 17 m s−1), is an important parameter for estimating TC risks such as wind damage, rainfall distribution, and storm surge. Previous studies have reported that there is a very weak relationship between TC size and TC intensity. A close examination presented here using satellite-based wind analyses suggests that the relationship between TC size and intensity is nonlinear. TC size generally increases with increasing TC maximum sustained wind before a maximum of 2.50° latitude at an intensity of 103 kt or 53.0 m s−1 and then slowly decreases as the TC intensity further increases. The observed relationship between TC size and intensity is compared to the relationships produced by an 11-yr seasonal numerical simulation of TC activity. The numerical simulations were able to produce neither the observed maximum sustained winds nor the observed nonlinear relationship between TC size and intensity. This finding suggests that TC size cannot reasonably be simulated with 9-km horizontal resolution and increased resolution is needed to study TC size variations using numerical simulations.

Corresponding author address: Prof. Liguang Wu, Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China. E-mail: liguang@nuist.edu.cn
Save