Surface Temperature Probability Distributions in the NARCCAP Hindcast Experiment: Evaluation Methodology, Metrics, and Results

Paul C. Loikith * Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California

Search for other papers by Paul C. Loikith in
Current site
Google Scholar
PubMed
Close
,
Duane E. Waliser Jet Propulsion Laboratory/California Institute of Technology, Pasadena, and Joint Institute for Regional Earth System Science and Engineering, University of Los Angeles, Los Angeles, California

Search for other papers by Duane E. Waliser in
Current site
Google Scholar
PubMed
Close
,
Huikyo Lee * Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California

Search for other papers by Huikyo Lee in
Current site
Google Scholar
PubMed
Close
,
Jinwon Kim Joint Institute for Regional Earth System Science and Engineering, University of Los Angeles, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jinwon Kim in
Current site
Google Scholar
PubMed
Close
,
J. David Neelin Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
,
Benjamin R. Lintner Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
,
Seth McGinnis ** Institute for Mathematical Applications to the Geosciences, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Seth McGinnis in
Current site
Google Scholar
PubMed
Close
,
Chris A. Mattmann Jet Propulsion Laboratory/California Institute of Technology, Pasadena, and Joint Institute for Regional Earth System Science and Engineering, University of Los Angeles, Los Angeles, California

Search for other papers by Chris A. Mattmann in
Current site
Google Scholar
PubMed
Close
, and
Linda O. Mearns ** Institute for Mathematical Applications to the Geosciences, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Linda O. Mearns in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Methodology is developed and applied to evaluate the characteristics of daily surface temperature distributions in a six-member regional climate model (RCM) hindcast experiment conducted as part of the North American Regional Climate Change Assessment Program (NARCCAP). A surface temperature dataset combining gridded station observations and reanalysis is employed as the primary reference. Temperature biases are documented across the distribution, focusing on the median and tails. Temperature variance is generally higher in the RCMs than reference, while skewness is reasonably simulated in winter over the entire domain and over the western United States and Canada in summer. Substantial differences in skewness exist over the southern and eastern portions of the domain in summer. Four examples with observed long-tailed probability distribution functions (PDFs) are selected for model comparison. Long cold tails in the winter are simulated with high fidelity for Seattle, Washington, and Chicago, Illinois. In summer, the RCMs are unable to capture the distribution width and long warm tails for the coastal location of Los Angeles, California, while long cold tails are poorly realized for Houston, Texas. The evaluation results are repeated using two additional reanalysis products adjusted by station observations and two standard reanalysis products to assess the impact of observational uncertainty. Results are robust when compared with those obtained using the adjusted reanalysis products as reference, while larger uncertainties are introduced when standard reanalysis is employed as reference. Model biases identified in this work will allow for further investigation into associated mechanisms and implications for future simulations of temperature extremes.

Corresponding author address: Paul C. Loikith, Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91101. E-mail: paul.c.loikith@jpl.nasa.gov

Abstract

Methodology is developed and applied to evaluate the characteristics of daily surface temperature distributions in a six-member regional climate model (RCM) hindcast experiment conducted as part of the North American Regional Climate Change Assessment Program (NARCCAP). A surface temperature dataset combining gridded station observations and reanalysis is employed as the primary reference. Temperature biases are documented across the distribution, focusing on the median and tails. Temperature variance is generally higher in the RCMs than reference, while skewness is reasonably simulated in winter over the entire domain and over the western United States and Canada in summer. Substantial differences in skewness exist over the southern and eastern portions of the domain in summer. Four examples with observed long-tailed probability distribution functions (PDFs) are selected for model comparison. Long cold tails in the winter are simulated with high fidelity for Seattle, Washington, and Chicago, Illinois. In summer, the RCMs are unable to capture the distribution width and long warm tails for the coastal location of Los Angeles, California, while long cold tails are poorly realized for Houston, Texas. The evaluation results are repeated using two additional reanalysis products adjusted by station observations and two standard reanalysis products to assess the impact of observational uncertainty. Results are robust when compared with those obtained using the adjusted reanalysis products as reference, while larger uncertainties are introduced when standard reanalysis is employed as reference. Model biases identified in this work will allow for further investigation into associated mechanisms and implications for future simulations of temperature extremes.

Corresponding author address: Paul C. Loikith, Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91101. E-mail: paul.c.loikith@jpl.nasa.gov
Save
  • Beniston, M., 2004: The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett., 31, L02202, doi:10.1029/2003GL018857.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., 2012: Temperature trends in the NARCCAP regional climate models. J. Climate, 25, 3985–3991, doi:10.1175/JCLI-D-11-00588.1.

    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Cavanaugh, N. R., and S. S. P. Shen, 2014: Northern Hemisphere climatology and trends of statistical moments documented from GHCN daily surface air temperature station data from 1950 to 2010. J. Climate, 27, 5396–5410, doi:10.1175/JCLI-D-13-00470.1.

    • Search Google Scholar
    • Export Citation
  • Caya, D., and R. LaPrise, 1999: A semi-Lagrangian semi-implicit regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341–362, doi:10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., and A. Porporato, 2004: Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA, 101, 8848–8851, doi:10.1073/pnas.0401428101.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett.,39, L14707, doi:10.1029/2012GL052459.

  • Field, C. B., and Coauthors, Eds., 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Fields Development Team, 2006: fields: Tools for Spatial Data. National Center for Atmospheric Research. [Available online at http://www.image.ucar.edu/GSP/Software/Fields/.]

  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 5081–5099, doi:10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813, doi:10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, G. T. Bates, and G. De Canio, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832, doi:10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gómez-Navarro, J. J., J. P. Montávez, S. Jerez, P. Jiménez-Guerrero, and E. Zorita, 2012: What is the role of the observational dataset in the evaluation and scoring of climate models? Geophys. Res. Lett., 39, L24701, doi:10.1029/2012GL054206.

    • Search Google Scholar
    • Export Citation
  • Grell, G., J. Dudhia, and D. R. Stauffer, 1993: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398-STR, 107 pp.

  • Griffiths, G. M., and Coauthors, 2005: Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. Int. J. Climatol., 25, 1301–1330, doi:10.1002/joc.1194.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., F. W. Zwiers, P. A. Stott, and V. V. Kharin, 2004: Detectability of anthropogenic changes in annual temperature and precipitation extremes. J. Climate, 17, 3683–3700, doi:10.1175/1520-0442(2004)017<3683:DOACIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and E. Kalnay, 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 408, 842–844, doi:10.1038/35048548.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., and A. Hall, 2010: Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Climate Dyn., 34, 847–857, doi:10.1007/s00382-009-0650-4.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., D. C. Hassell, D. Hudson, S. S. Wilson, G. J. Jenkins, and J. F. B. Mitchess, 2004: Workbook on generating high resolution climate change scenarios using PRECIS. Hadley Centre for Climate Prediction and Research, 39 pp.

  • Juang, H., S. Hong, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 2125–2143, doi:10.1175/1520-0477(1997)078<2125:TNRSMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2012: U.S. temperature and drought: Recent anomalies and trends. Eos, 93, 473–475, doi:10.1029/2012EO470001.

    • Search Google Scholar
    • Export Citation
  • Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 3872–3889, doi:10.1175/2008JCLI2125.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and Coauthors, 2013: Evaluation of the surface climatology over the conterminous United States in the North American Regional Climate Change Assessment Program hindcast experiment using a regional climate model evaluation system. J. Climate, 26, 5698–5715, doi:10.1175/JCLI-D-12-00452.1.

    • Search Google Scholar
    • Export Citation
  • Kjellström, E., F. Boberg, M. Castro, J. Hesselbjerg Christensen, G. Nikulin, and E. Sánchez, 2010: Daily and monthly temperature and precipitation statistics as indicators for regional climate models. Climate Res., 44, 135–150, doi:10.3354/cr00932.

    • Search Google Scholar
    • Export Citation
  • Kjellström, E., G. Nikulin, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus, 63A, 24–40, doi:10.1111/j.1600-0870.2010.00475.x.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 4761–4784, doi:10.1175/JCLI-D-11-00575.1.

    • Search Google Scholar
    • Export Citation
  • Lee, D. T., and B. J. Schachter, 1980: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci., 9, 219–242, doi:10.1007/BF00977785.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 7266–7281, doi:10.1175/JCLI-D-11-00709.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2014: The influence of recurrent modes of climate variability on the occurrence of winter and summer extreme temperatures over North America. J. Climate, 27, 1600–1618, doi:10.1175/JCLI-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, J. Kim, H. Lee, J. D. Neelin, and D. E. Waliser, 2013: Classifying reanalysis surface temperature probability density functions (PDFs) over North America with cluster analysis. Geophys. Res. Lett., 40, 3710–3714, doi:10.1002/grl.50688.

    • Search Google Scholar
    • Export Citation
  • Luber, G., and M. McGeehin, 2008: Climate change and extreme heat events. Amer. J. Prev. Med., 35, 429–435, doi:10.1016/j.amepre.2008.08.021.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. J. Gutowski, R. Jones, L.-Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, 90, 311–312, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 1337–1362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, cited 2013: The North American Regional Climate Change Assessment Program dataset. National Center for Atmospheric Research Earth System Grid, doi:10.5065/D6RN35ST.

  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, doi:10.1029/2009GL040736.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Otto, F. E. L., N. Massey, G. J. van Oldenborgh, R. G. Jones, and M. R. Allen, 2012: Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett., 39, L04702, doi:10.1029/2011GL050422.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 4356–4376, doi:10.1175/JCLI4253.1.

    • Search Google Scholar
    • Export Citation
  • Perron, M., and P. Sura, 2013: Climatology of non-Gaussian atmospheric statistics. J. Climate, 26, 1063–1083, doi:10.1175/JCLI-D-11-00504.1.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 905–17 909, doi:10.1073/pnas.1101766108.

    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. Barsugli, K. Cozzetto, J. Neff, and J. Prairie, 2012: Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models. Climate Dyn., 39, 1823–1840, doi:10.1007/s00382-011-1282-z.

    • Search Google Scholar
    • Export Citation
  • Rhines, A., and P. Huybers, 2013: Frequent summer temperature extremes reflect changes in the mean, not the variance. Proc. Natl. Acad. Sci. USA, 110, E546, doi:10.1073/pnas.1218748110.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ruff, T. W., and J. D. Neelin, 2012: Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett., 39, L04704, doi:10.1029/2011GL050610.

    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332–336, doi:10.1038/nature02300.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRFG version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Sobolowski, S., and T. Pavelsky, 2012: Evaluation of present and future North American Regional Climate Change Assessment Program (NARCCAP) regional climate simulations over the southeast United States. J. Geophys. Res., 117, D01101, doi:10.1029/2011JD016430.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution for the European heatwave of 2003. Nature, 432, 610–614, doi:10.1038/nature03089.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes, an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185–211, doi:10.1007/s10584-006-9051-4.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2013: Development of global hourly 0.5° land surface air temperature datasets. J. Climate, 26, 7676–7691, doi:10.1175/JCLI-D-12-00682.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2014: Global hourly 0.5-degree land surface air temperature datasets. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory (accessed 24 Jun 2014), doi:10.5065/D6PR7SZF.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2049 786 64
PDF Downloads 703 76 13