Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes

A. Gettelman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by A. Gettelman in
Current site
Google Scholar
PubMed
Close
and
H. Morrison National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by H. Morrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Prognostic precipitation is added to a cloud microphysical scheme for global climate models. Results indicate very similar performance to other commonly used mesoscale schemes in an offline driver for idealized warm rain cases, better than the previous version of the global model microphysics scheme with diagnostic precipitation. In the mixed phase regime, there is significantly more water and less ice, which may address a common bias seen with the scheme in climate simulations in the Arctic. For steady forcing cases, the scheme has limited sensitivity to time step out to the ~15-min time steps typical of global models. The scheme is similar to other schemes with moderate sensitivity to vertical resolution. The limited time step sensitivity bodes well for use of the scheme in multiscale models from the mesoscale to the large scale. The scheme is sensitive to idealized perturbations of cloud drop and crystal number. Precipitation decreases and condensate increases with increasing drop number, indicating substantial decreases in precipitation efficiency. The sensitivity is less than with the previous version of the scheme for low drop number concentrations (Nc < 100 cm−3). Ice condensate increases with ice number, with large decreases in liquid condensate as well for a mixed phase case. As expected with prognostic precipitation, accretion is stronger than with diagnostic precipitation and the accretion to autoconversion ratio increases faster with liquid water path (LWP), in better agreement with idealized models and earlier studies than the previous version.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: A. Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: andrew@ucar.edu

Abstract

Prognostic precipitation is added to a cloud microphysical scheme for global climate models. Results indicate very similar performance to other commonly used mesoscale schemes in an offline driver for idealized warm rain cases, better than the previous version of the global model microphysics scheme with diagnostic precipitation. In the mixed phase regime, there is significantly more water and less ice, which may address a common bias seen with the scheme in climate simulations in the Arctic. For steady forcing cases, the scheme has limited sensitivity to time step out to the ~15-min time steps typical of global models. The scheme is similar to other schemes with moderate sensitivity to vertical resolution. The limited time step sensitivity bodes well for use of the scheme in multiscale models from the mesoscale to the large scale. The scheme is sensitive to idealized perturbations of cloud drop and crystal number. Precipitation decreases and condensate increases with increasing drop number, indicating substantial decreases in precipitation efficiency. The sensitivity is less than with the previous version of the scheme for low drop number concentrations (Nc < 100 cm−3). Ice condensate increases with ice number, with large decreases in liquid condensate as well for a mixed phase case. As expected with prognostic precipitation, accretion is stronger than with diagnostic precipitation and the accretion to autoconversion ratio increases faster with liquid water path (LWP), in better agreement with idealized models and earlier studies than the previous version.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: A. Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: andrew@ucar.edu
Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation. 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, doi:10.1029/1999JD901161.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev., 5, 14071423, doi:10.5194/gmd-5-1407-2012.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and U. Lohmann, 1995: The sulfate–CCN–cloud albedo effect: A sensitivity study with two general circulation models. Tellus, 47B, 281300, doi:10.1034/j.1600-0889.47.issue3.1.x.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32, doi:10.1175/0065-9401-21.43.29.

  • Flatau, P. J., R. L. Walko, and W. R. Cotton, 1992: Polynomial fits to saturation vapor pressure. J. Appl. Meteor. Climatol., 31, 15071513, doi:10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489529, doi:10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part II: Single-column and global results. J. Climate, 21, 36603679, doi:10.1175/2008JCLI2116.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Multi-model assessment of the upper troposphere and lower stratosphere: Tropics and trends. J. Geophys. Res.,115, D00M08, doi:10.1029/2009JD013638.

  • Gettelman, A., H. Morrison, C. R. Terai, and R. Wood, 2013: Microphysical process rates and global aerosol–cloud interactions. Atmos. Chem. Phys. Discuss., 13, 11 78911 825, doi:10.5194/acpd-13-11789-2013.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. H. Caldwell, 2014: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud interactions. J. Climate, 28, 12881307, doi:10.1175/JCLI-D-14-00103.1.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. C. Easter, 1992: Computationally efficient approximations to stratiform cloud microphysics parameterization. Mon. Wea. Rev., 120, 15721582, doi:10.1175/1520-0493(1992)120<1572:CEATSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and S. Gratch, 1946: Low-pressure properties of water from −160°F to 212°F. Trans. Amer. Soc. Heat. Vent. Eng., 52, 95121.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., G. Feingold, and A. Sorooshian, 2010: Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds. J. Atmos. Sci., 67, 35263540, doi:10.1175/2010JAS3484.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M., H. Morrison, and A. Gettelman, 2013: Microphysical implications of cloud–precipitation covariance derived from satellite remote sensing. J. Geophys. Res. Atmos., 118, 65216533, doi:10.1002/jgrd.50347.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., M. K. MacVean, and A. P. Lock, 1992: Positivity-preserving numerical schemes for multidimensional advection. NASA Tech. Memo. NASA-TM-106055, ICOMP-93-05, 62 pp. [Available online at http://ntrs.nasa.gov/search.jsp?R=19930017902.]

  • Lohmann, U., 2008: Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys., 8, 21152131, doi:10.5194/acp-8-2115-2008.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2002: Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Quart. J. Roy. Meteor. Soc., 128, 229257, doi:10.1256/00359000260498879.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, R., and U. Lohmann, 2008: Introduction of prognostic rain in ECHAM5: Design and single column model simulations. Atmos. Chem. Phys., 8, 29492963, doi:10.5194/acp-8-2949-2008.

    • Search Google Scholar
    • Export Citation
  • Posselt, R., and U. Lohmann, 2009: Sensitivity of the total anthropogenic aerosol effect to the treatment of rain in a global climate model. Geophys. Res. Lett.,36, L02805, doi:10.1029/2008GL035796.

  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc.,138, 2196–2211, doi:10.1002/qj.1913.

  • Song, X., G. J. Zhang, and J.-L. F. Li, 2012: Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Mode CAM5. J. Climate,25, 8568–8590, doi:10.1175/JCLI-D-11-00563.1.

  • Terai, C. R., R. Wood, D. C. Leon, and P. Zuidema, 2012: Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmos. Chem. Phys., 12, 45674583, doi:10.5194/acp-12-4567-2012.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model global atmosphere 4.0 and JULES global land 4.0 configurations. Geosci. Model Dev., 7, 361386, doi:10.5194/gmd-7-361-2014.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and Coauthors, 2012: Constraining cloud lifetime effects of aerosols using A-Train satellite observations. Geophys. Res. Lett., 39, L15709, doi:10.1029/2012GL052204.

    • Search Google Scholar
    • Export Citation
  • Wood, R., T. L. Kubar, and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990, doi:10.1175/2009JAS3072.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3982 1685 138
PDF Downloads 2704 755 66