Nonlinear Ensemble Parameter Perturbation for Climate Models

Xudong Yin State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Xudong Yin in
Current site
Google Scholar
PubMed
Close
,
Juanjuan Liu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Juanjuan Liu in
Current site
Google Scholar
PubMed
Close
, and
Bin Wang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and Center for Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Model parameters can introduce significant uncertainties in climate simulations. Sensitivity analysis provides a way to quantify such uncertainties. Existing sensitivity analysis methods, however, cannot estimate the maximum sensitivity of the simulated climate to perturbations in multiple parameters. This study proposes the concept of nonlinear ensemble parameter perturbation (NEPP), which is independent of model initial conditions, to estimate the maximum effect of parameter perturbations on simulating Earth’s climate. The NEPP is obtained by solving a maximization problem, whose cost function is defined by the maximum deviation of a unique ensemble of short-term predictions with large enough members caused by parameter perturbations and whose optimal solution is obtained by an ensemble-based gradient approach. This method is used to investigate the effects of NEPP on the climate of the Lorenz-63 model and a complex climate model, the Grid-Point Atmospheric Model of IAP LASG, version 2 (GAMIL2). It is found that the NEPP is capable of estimating the maximum change in climate simulation caused by perturbations in multiple parameters when the Lorenz-63 model is used. With a low computational cost, the NEPP can cause remarkable changes in the climatology of GAMIL2. The results also illustrate that the effects of parameter perturbations on short-term weather predictions and those on long-term climate simulations are correlated.

Corresponding author address: Juanjuan Liu, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: ljjxgg@mail.iap.ac.cn

Abstract

Model parameters can introduce significant uncertainties in climate simulations. Sensitivity analysis provides a way to quantify such uncertainties. Existing sensitivity analysis methods, however, cannot estimate the maximum sensitivity of the simulated climate to perturbations in multiple parameters. This study proposes the concept of nonlinear ensemble parameter perturbation (NEPP), which is independent of model initial conditions, to estimate the maximum effect of parameter perturbations on simulating Earth’s climate. The NEPP is obtained by solving a maximization problem, whose cost function is defined by the maximum deviation of a unique ensemble of short-term predictions with large enough members caused by parameter perturbations and whose optimal solution is obtained by an ensemble-based gradient approach. This method is used to investigate the effects of NEPP on the climate of the Lorenz-63 model and a complex climate model, the Grid-Point Atmospheric Model of IAP LASG, version 2 (GAMIL2). It is found that the NEPP is capable of estimating the maximum change in climate simulation caused by perturbations in multiple parameters when the Lorenz-63 model is used. With a low computational cost, the NEPP can cause remarkable changes in the climatology of GAMIL2. The results also illustrate that the effects of parameter perturbations on short-term weather predictions and those on long-term climate simulations are correlated.

Corresponding author address: Juanjuan Liu, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: ljjxgg@mail.iap.ac.cn
Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnett, D. N., S. J. Brown, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2006: Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Climate Dyn., 26, 489511, doi:10.1007/s00382-005-0097-1.

    • Search Google Scholar
    • Export Citation
  • Blonigan, P. J., and Q. Wang, 2014: Probability density adjoint for sensitivity analysis of the mean of chaos. J. Comput. Phys., 270, 660686, doi:10.1016/j.jcp.2014.04.027.

    • Search Google Scholar
    • Export Citation
  • Chu, P. C., 1999: Two kinds of predictability in the Lorenz system. J. Atmos. Sci., 56, 14271432, doi:10.1175/1520-0469(1999)056<1427:TKOPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corti, S., and T. N. Palmer, 1997: Sensitivity analysis of atmospheric low-frequency variability. Quart. J. Roy. Meteor. Soc., 123, 24252447, doi:10.1002/qj.49712354413.

    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., and R. Todling, 2010: Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Quart. J. Roy. Meteor. Soc., 136, 20002012, doi:10.1002/qj.693.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Eyink, G. L., T. W. N. Haine, and D. J. Lea, 2004: Ruelle’s linear response formula, ensemble adjoint schemes and Lévy flights. Nonlinearity, 17, 18671889, doi:10.1088/0951-7715/17/5/016.

    • Search Google Scholar
    • Export Citation
  • Hall, M. C., 1986: Application of adjoint sensitivity theory to an atmospheric general circulation model. J. Atmos. Sci., 43, 26442651, doi:10.1175/1520-0469(1986)043<2644:AOASTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, M. C., D. G. Cacuci, and M. E. Schlesinger, 1982: Sensitivity analysis of a radiative-convective model by the adjoint method. J. Atmos. Sci., 39, 20382050, doi:10.1175/1520-0469(1982)039<2038:SAOARC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 121, doi:10.1002/qj.49710945902.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, doi:10.1002/qj.1991.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., 2009: Use of Bayesian inference and data to improve simulations of multi-physics climate phenomena. J. Phys.,180, 012029, doi:1742-6596/180/1/012029.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., M. K. Sen, G. Huerta, Y. Deng, and K. P. Bowman, 2008: Error reduction and convergence in climate prediction. J. Climate, 21, 66986709, doi:10.1175/2008JCLI2112.1.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., and J. J. Morcrette, 2005: Investigation of the sensitivity of the ECMWF radiation scheme to input parameters using the adjoint technique. Quart. J. Roy. Meteor. Soc., 131, 19751995, doi:10.1256/qj.04.183.

    • Search Google Scholar
    • Export Citation
  • Knight, C. G., and Coauthors, 2007: Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models. Proc. Natl. Acad. Sci. USA, 104, 12 25912 264, doi:10.1073/pnas.0608144104.

    • Search Google Scholar
    • Export Citation
  • Lea, D. J., M. R. Allen, and T. W. Haine, 2000: Sensitivity analysis of the climate of a chaotic system. Tellus, 52, 523532, doi:10.1034/j.1600-0870.2000.01137.x.

    • Search Google Scholar
    • Export Citation
  • Lea, D. J., T. W. Haine, M. R. Allen, and J. A. Hansen, 2002: Sensitivity analysis of the climate of a chaotic ocean circulation model. Quart. J. Roy. Meteor. Soc., 128, 25872605, doi:10.1256/qj.01.180.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013a: Evaluation of Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2). Adv. Atmos. Sci., 30, 855867, doi:10.1007/s00376-013-2157-5.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013b: The Flexible Global Ocean-Atmosphere-Land System model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Search Google Scholar
    • Export Citation
  • Liu, L., R. Li, G. Yang, B. Wang, L. Li, and Y. Pu, 2014a: Improving parallel performance of a finite-difference AGCM on modern high-performance computers. J. Atmos. Oceanic Technol., 31, 2157–2168, doi:10.1175/JTECH-D-13-00067.1.

    • Search Google Scholar
    • Export Citation
  • Liu, L., G. Yang, B. Wang, C. Zhang, R. Li, Z. Zhang, Y. Ji, and L. Wang, 2014b: C-Coupler1: A Chinese community coupler for Earth system modelling. Geosci. Model Dev., 7, 22812302, doi:10.5194/gmd-7-2281-2014.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Meinshausen, M., N. Meinshausen, W. Hare, S. C. Raper, K. Frieler, R. Knutti, D. J. Frame, and M. R. Allen, 2009: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458, 11581162, doi:10.1038/nature08017.

    • Search Google Scholar
    • Export Citation
  • Moolenaar, H. E., and F. M. Selten, 2004: Finding the effective parameter perturbations in atmospheric models: The LORENZ63 model as case study. Tellus, 56A, 4755, doi:10.1111/j.1600-0870.2004.00043.x.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and J. Wang, 2001: Nonlinear fastest growing perturbation and the first kind of predictability. Sci. China, 44, 11281139, doi:10.1007/BF02906869.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes Geophys., 10, 493501, doi:10.5194/npg-10-493-2003.

    • Search Google Scholar
    • Export Citation
  • Mu, M., L. Sun, and H. A. Dijkstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite amplitude perturbations. J. Phys. Oceanogr., 34, 23052315, doi:10.1175/1520-0485(2004)034<2305:TSASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Processes Geophys., 17, 211220, doi:10.5194/npg-17-211-2010.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantifying uncertainties in climate change from a large ensemble of general circulation model predictions. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Orrell, D., 2003: Model error and predictability over different timescales in the Lorenz ’96 systems. J. Atmos. Sci., 60, 22192228, doi:10.1175/1520-0469(2003)060<2219:MEAPOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591, doi:10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogelj, J., M. Meinshausen, and R. Knutti, 2012: Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Climate Change, 2, 248253, doi:10.1038/nclimate1385.

    • Search Google Scholar
    • Export Citation
  • Rose, C., and M. D. Smith, 2002: Mathematical Statistics with Mathematica. Springer-Verlag, 311 pp.

  • Saltzman, B., 1962: Finite amplitude free convection as an initial value problem—I. J. Atmos. Sci., 19, 329341, doi:10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., and T. Palmer, 2011: Uncertainty in weather and climate prediction. Philos. Trans. Roy. Soc. London, A369, 47514767, doi:10.1098/rsta.2011.0161.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406, doi:10.1038/nature03301.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540, doi:10.1175/JCLI3363.1.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 2005: Climate sensitivities via a Fokker–Planck adjoint approach. Quart. J. Roy. Meteor. Soc., 131, 7392, doi:10.1256/qj.04.46.

    • Search Google Scholar
    • Export Citation
  • Villagran, A., G. Huerta, C. S. Jackson, and M. K. Sen, 2008: Computational methods for parameter estimation in climate models. Bayesian Anal., 3, 823850, doi:10.1214/08-BA331.

    • Search Google Scholar
    • Export Citation
  • Wang, B., H. Wan, Z. Ji, X. Zhang, R. Yu, Y. Yu, and H. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci. China, 47, 421, doi:10.1360/04za0001.

    • Search Google Scholar
    • Export Citation
  • Webster, M. D., and A. Sokolov, 1998: Quantifying the uncertainty in climate predictions. MIT Joint Program on the Science and Policy of Global Change Rep. 37, 23 pp. [Available online at http://hdl.handle.net/1721.1/3610.]

  • Xu, K. M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119, 342367, doi:10.1175/1520-0493(1991)119<0342:EOCPUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, X., B. Wang, J. Liu, and X. Tan, 2014: Evaluation of conditional nonlinear optimal perturbation obtained by an ensemble-based approach using the Lorenz-63 model. Tellus, 66A, 22773, doi:10.3402/tellusa.v66.22773.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Mu, 2005: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 110, D09109, doi:10.1029/2004JD005617.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1623 1311 71
PDF Downloads 255 61 1