Investigating the Local Atmospheric Response to a Realistic Shift in the Oyashio Sea Surface Temperature Front

Dimitry Smirnov Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/ESRL, Boulder, Colorado

Search for other papers by Dimitry Smirnov in
Current site
Google Scholar
PubMed
Close
,
Matthew Newman Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/ESRL, Boulder, Colorado

Search for other papers by Matthew Newman in
Current site
Google Scholar
PubMed
Close
,
Michael A. Alexander NOAA/ESRL, Boulder, Colorado

Search for other papers by Michael A. Alexander in
Current site
Google Scholar
PubMed
Close
,
Young-Oh Kwon Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Young-Oh Kwon in
Current site
Google Scholar
PubMed
Close
, and
Claude Frankignoul LOCEAN/IPSL, Université Pierre et Marie Curie, Paris, France

Search for other papers by Claude Frankignoul in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.

Corresponding author address: Dimitry Smirnov, NOAA/ESRL, 325 Broadway, R/PSD1, Boulder, CO 80305. E-mail: chillwx@gmail.com

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.

Corresponding author address: Dimitry Smirnov, NOAA/ESRL, 325 Broadway, R/PSD1, Boulder, CO 80305. E-mail: chillwx@gmail.com

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., and D. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Billingsley, D., 1998: A review of QG theory—Part III: A different approach. Natl. Wea. Dig., 22, 310.

  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, doi:10.1175/MWR-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 18471853, doi:10.1175/JCLI-D-11-00329.1.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., and D. Battisti, 2000: Interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27, 767770, doi:10.1029/1999GL010910.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 10951101, doi:10.1002/qj.814.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., G. Lapeyre, and M. Ghil, 2012: Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model. J. Atmos. Sci., 69, 16171632, doi:10.1175/JAS-D-11-0288.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970’s to the 1980’s. J. Climate, 12, 16971706, doi:10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and T. T. Warner, 1993: The impact of the sea surface temperature resolution on mesoscale coastal processes during GALE IOP 2. Mon. Wea. Rev., 121, 313334, doi:10.1175/1520-0493(1993)121<0313:TIOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961981, doi:10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, doi:10.1029/RG023i004p00357.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. Kestenare, 2002: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and North Pacific. Climate Dyn., 19, 633647, doi:10.1007/s00382-002-0252-x.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592606, doi:10.1175/JCLI4021.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Muller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546, doi:10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Hedever, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, doi:10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y. Kwon, and M. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, doi:10.1175/2010JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Gan, B., and L. Wu, 2013: Seasonal and long-term coupling between wintertime storm tracks and sea surface temperature in the North Pacific. J. Climate, 26, 61236136, doi:10.1175/JCLI-D-12-00724.1.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., J. Derome, and H. Lin, 2001: The extratropical signal generated by a midlatitude SST anomaly. Part I: Sensitivity at equilibrium. J. Climate, 14, 20352053, doi:10.1175/1520-0442(2001)014<2035:TESGBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and D. L. Hartmann, 1982: Stationary waves on a sphere: Sensitivity to thermal feedback. J. Atmos. Sci., 39, 19061920, doi:10.1175/1520-0469(1982)039<1906:SWOASS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765, doi:10.1017/S1350482798000553.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the omega equation. Quart. J. Roy. Meteor. Soc., 104, 3138, doi:10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukokougawa, and S.-P. Xie, 2003: Atmospheric response to zonal variations in midlatitude SST: Transient and stationary eddies and their feedback. J. Climate, 16, 33143329, doi:10.1175/1520-0442(2003)016<3314:ARTZVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacobs, N. A., S. Raman, G. M. Lackmann, and P. P. Childs Jr., 2008: The influence of the Gulf Stream induced SST gradients on the US East Coast winter storm of 24–25 January 2000. Int. J. Remote Sens., 29, 61456174, doi:10.1080/01431160802175561.

    • Search Google Scholar
    • Export Citation
  • James, I. N., 1995: Introduction to Circulating Atmospheres. Cambridge University Press, 422 pp.

  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, doi:10.1175/JAS-D-12-082.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1968: A diagnostic balance model for studies of weather systems of low and high latitudes, Rossby number less than 1. Mon. Wea. Rev., 96, 197207, doi:10.1175/1520-0493(1968)096<0197:ADBMFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and N.-C. Lau, 1992: The general circulation model response to a North Pacific SST anomaly: Dependence on time scale and pattern polarity. J. Climate, 5, 271283, doi:10.1175/1520-0442(1992)005<0271:TGCMRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. Robinson, I. Bladé, N. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and T. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio Extension variability. J. Climate, 26, 98399859, doi:10.1175/JCLI-D-12-00647.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, doi:10.1175/2010JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Lee, D., Z. Liu, and Y. Liu, 2008: Beyond thermal interaction between ocean and atmosphere: On the extratropical climate variability due to the wind-induced SST. J. Climate, 21, 20012018, doi:10.1175/2007JCLI1532.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., N. Wen, and Z. Liu, 2006: An observational study of the impact of the North Pacific SST on the atmosphere. Geophys. Res. Lett., 33, L18611, doi:10.1029/2006GL026082.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean–atmosphere coupling. J. Climate, 17, 18591882, doi:10.1175/1520-0442(2004)017<1859:ARTNPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S. Xie, and R. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, M. Miyashita, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, doi:10.1175/2010JCLI3359.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth's Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346.

  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of mid-latitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+, 224 pp.

  • Newman, M., 2013: An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 52605269, doi:10.1175/JCLI-D-12-00590.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Nieman, S. J., 1990: A diagnosis of non-quasigeostrophic vertical motion for a model-simulated rapidly intensifying marine extratropical cyclone. M.S. thesis, Department of Meteorology, University of Wisconsin–Madison, 181 pp.

  • Nonaka, M., and S.-P. Xie, 2003: Covariations of SST and wind over the Kuroshio and its extension: Evidence for ocean-to-atmospheric feedback. J. Climate, 16, 14041413, doi:10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulations in an eddy-resolving OGCM. J. Climate, 19, 19701989, doi:10.1175/JCLI3793.1.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Kuwano-Yoshida, and K. Takaya, 2009: Air–sea heat exchanges characteristic of a prominent midlatitude oceanic front in the south Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 65156535, doi:10.1175/2009JCLI2960.1.

    • Search Google Scholar
    • Export Citation
  • Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2014: Assessing the importance of prominent warm SST anomalies over the midlatitude North Pacific in forcing large-scale atmospheric anomalies during 2011 summer and autumn. J. Climate, 27, 38893903, doi:10.1175/JCLI-D-13-00140.1.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2334, in press.

    • Search Google Scholar
    • Export Citation
  • Park, S., C. Deser, and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18, 45824599, doi:10.1175/JCLI3521.1.

    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and S. J. Nieman, 1992: A comparison of quasigeostrophic and nonquasigeostrophic vertical motions for a rapidly intensifying marine extratropical cyclone. Mon. Wea. Rev., 120, 11081134, doi:10.1175/1520-0493(1992)120<1108:ACOQAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408, doi:10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14, 29432959, doi:10.1175/1520-0442(2001)014<2943:RBAIVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987, doi:10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, doi:10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pitcher, E. J., M. L. Blackmon, G. T. Bates, and S. Muñoz, 1988: The effect of North Pacific sea surface temperature anomalies on the January climate of a general circulation model. J. Atmos. Sci., 45, 173188, doi:10.1175/1520-0469(1988)045<0173:TEONPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30, 14861502, doi:10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., N. Schneider, and S. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Climate, 20, 36023620, doi:10.1175/JCLI4190.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 17511764, doi:10.1175/JCLI-D-13-00318.1.

    • Search Google Scholar
    • Export Citation
  • Raisanen, J., 1995: Factors affecting synoptic-scale vertical motions: A statistical study using a generalized omega equation. Mon. Wea. Rev., 123, 24472460, doi:10.1175/1520-0493(1995)123<2447:FASSVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Renard, R. J., and L. C. Clarke, 1965: Experiments in numerical objective frontal analysis. Mon. Wea. Rev., 93, 547556, doi:10.1175/1520-0493(1965)093<0547:EINOFA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, T. Asai, and M. Inatsu, 2012: Influence of the Kuroshio in the East China Sea on the early summer (baiu) rain. J. Climate, 25, 66276645, doi:10.1175/JCLI-D-11-00727.1.

    • Search Google Scholar
    • Export Citation
  • Saulière, J., D. J. Brayshaw, B. Hoskins, and M. Blackburn, 2012: Further investigation of the impact of idealized continents and SST distributions on the Northern Hemisphere storm tracks. J. Atmos. Sci., 69, 840856, doi:10.1175/JAS-D-11-0113.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific ocean climate. J. Climate, 14, 39974002, doi:10.1175/1520-0442(2001)014<3997:PWNPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373, doi:10.1175/JCLI3527.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., Y.-O. Kwon, and J.-J. Park, 2014: On the effect of the East/Japan Sea SST variability on the North Pacific atmospheric circulation in a regional climate model. J. Geophys. Res., 119, 418–444, doi:10.1002/2013JD020523.

    • Search Google Scholar
    • Export Citation
  • Sheldon, L., and A. Czaja, 2014: Seasonal and interannual variability of an index of deep atmospheric convection over the western boundary currents. Quart. J. Roy. Meteor. Soc., 140, 2230, doi:10.1002/qj.2103.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43,805828, doi:10.1007/s00382-013-1980-9.

    • Search Google Scholar
    • Export Citation
  • Smirnov, D., and D. J. Vimont, 2012: Extratropical forcing of tropical Atlantic variability during boreal summer and fall. J. Climate, 25, 20562076, doi:10.1175/JCLI-D-11-00104.1.

    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, and M. A. Alexander, 2014: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean. J. Climate, 27, 592606, doi:10.1175/JCLI-D-13-00123.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 65366560, doi:10.1175/2009JCLI2910.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-Yoshida, K. Takaya, and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J. Climate, 25, 111139, doi:10.1175/JCLI-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., 1991: The stationary wave response to a midlatitude SST anomaly in an idealized GCM. J. Atmos. Sci., 48, 12491275, doi:10.1175/1520-0469(1991)048<1249:TSWRTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1978: On the interpretation of the diagnostic quasi-geostrophic omega equation. Mon. Wea. Rev., 106, 131137, doi:10.1175/1520-0493(1978)106<0131:OTIOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 12–18.

  • Watanabe, M., F. Jin, and L. Pan, 2006: Accelerated iterative method for solving steady problems of linearized atmospheric models. J. Atmos. Sci., 63, 33663382, doi:10.1175/JAS3807.1.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2015: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., doi:10.1002/2013MS000276, in press.

  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, doi:10.1175/JAS-D-12-0226.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, D. Hassell, and K. Hodges, 2010: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Climate Dyn., 35, 341353, doi:10.1007/s00382-009-0554-3.

    • Search Google Scholar
    • Export Citation
  • Xu, H., M. Xu, S.-P. Xie, and Y. Wang, 2011: Deep atmospheric response to the spring Kuroshio over the East China Sea. J. Climate, 24, 49594972, doi:10.1175/JCLI-D-10-05034.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., N. Schneider, D. Pierce, and T. Barnett, 2001: Modeling of North Pacific climate variability forced by oceanic heat flux anomalies. J. Climate, 14, 40274046, doi:10.1175/1520-0442(2001)014<4027:MONPCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2896 1719 40
PDF Downloads 1078 252 19