Temporal and Spatial Variability of Wind Resources in the United States as Derived from the Climate Forecast System Reanalysis

Lejiang Yu Applied Hydrometeorological Research Institute, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Geography, and Center for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan

Search for other papers by Lejiang Yu in
Current site
Google Scholar
PubMed
Close
,
Shiyuan Zhong Department of Geography, and Center for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
,
Xindi Bian Northern Research Station, USDA Forest Service, Lansing, Michigan

Search for other papers by Xindi Bian in
Current site
Google Scholar
PubMed
Close
, and
Warren E. Heilman Northern Research Station, USDA Forest Service, Lansing, Michigan

Search for other papers by Warren E. Heilman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the spatial and temporal variability of wind speed at 80 m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the winter (summer), and higher (lower) speeds over much of the Midwest and U.S. Northeast (U.S. West and Southeast). Trends are also variable spatially, with more upward trends in areas of the Great Plains and Intermountain West of the United States and more downward trends elsewhere. The leading EOF mode, which accounts for 20% (summer) to 33% (winter) of the total variance and represents in-phase variations across the United States, responds mainly to the North Atlantic Oscillation (NAO) in summer and El Niño–Southern Oscillation (ENSO) in the other seasons. The dominant variation pattern can be explained by a southerly/southwesterly (westerly) anomaly over the U.S. East (U.S. West) as a result of the anomalous mean sea level pressure (MSLP) pattern. The second EOF mode, which explains about 15% of the total variance and shows a seesaw pattern, is mainly related to the springtime Arctic Oscillation (AO), the summertime recurrent circumglobal teleconnection (CGT), the autumn Pacific decadal oscillation (PDO), and the winter El Niño Modoki. The anomalous jet stream and MSLP patterns associated with these indices are responsible for the wind variation.

Corresponding author address: Dr. Shiyuan “Sharon” Zhong, Department of Geography, Michigan State University, 673 Auditorium Rd., East Lansing, MI 48824. E-mail: zhongs@msu.edu

Abstract

This study examines the spatial and temporal variability of wind speed at 80 m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the winter (summer), and higher (lower) speeds over much of the Midwest and U.S. Northeast (U.S. West and Southeast). Trends are also variable spatially, with more upward trends in areas of the Great Plains and Intermountain West of the United States and more downward trends elsewhere. The leading EOF mode, which accounts for 20% (summer) to 33% (winter) of the total variance and represents in-phase variations across the United States, responds mainly to the North Atlantic Oscillation (NAO) in summer and El Niño–Southern Oscillation (ENSO) in the other seasons. The dominant variation pattern can be explained by a southerly/southwesterly (westerly) anomaly over the U.S. East (U.S. West) as a result of the anomalous mean sea level pressure (MSLP) pattern. The second EOF mode, which explains about 15% of the total variance and shows a seesaw pattern, is mainly related to the springtime Arctic Oscillation (AO), the summertime recurrent circumglobal teleconnection (CGT), the autumn Pacific decadal oscillation (PDO), and the winter El Niño Modoki. The anomalous jet stream and MSLP patterns associated with these indices are responsible for the wind variation.

Corresponding author address: Dr. Shiyuan “Sharon” Zhong, Department of Geography, Michigan State University, 673 Auditorium Rd., East Lansing, MI 48824. E-mail: zhongs@msu.edu
Save
  • American Wind Energy Association, 2013: AWEA U.S. wind industry annual market report. 130 pp. [Available online at http://www.awea.org/marketreports.]

  • Archer, C. L., and M. Z. Jacobson, 2003: Spatial and temporal distributions of U.S. winds and windpower at 80 m derived from measurements. J. Geophys. Res., 108, 4289, doi:10.1029/2002JD002076.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, doi:10.1175/JCLI-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300.

    • Search Google Scholar
    • Export Citation
  • Berg, N., A. Hall, S. B. Capps, and M. Hughes, 2013: El Niño–Southern Oscillation impacts on winter winds over Southern California. Climate Dyn., 40, 109121, doi:10.1007/s00382-012-1461-6.

    • Search Google Scholar
    • Export Citation
  • Breslow, P. B., and D. J. Sailor, 2002: Vulnerability of wind power resources to climate change in the continental United States. Renewable Energy, 27, 585598, doi:10.1016/S0960-1481(01)00110-0.

    • Search Google Scholar
    • Export Citation
  • Chelliah, M., W. Ebisuzaki, S. Weaver, and A. Kumar, 2011: Evaluating the tropospheric variability in National Centers for Environmental Prediction’s Climate Forecast System Reanalysis. J. Geophys. Res., 116, D17107, doi:10.1029/2011JD015707.

    • Search Google Scholar
    • Export Citation
  • Chen, G., T. Iwasaki, H. Qin, and W. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 55175537, doi:10.1175/JCLI-D-14-00005.1.

    • Search Google Scholar
    • Export Citation
  • Clifton, A., and J. K. Lundquist, 2012: Data clustering reveals climate impacts on local wind phenomena. J. Appl. Meteor. Climatol., 51, 15471557, doi:10.1175/JAMC-D-11-0227.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, doi:10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 1998: Identification and implications of biases in U.S. surface wind observation, archival, and summarization methods. Theor. Appl. Climatol., 60, 151162, doi:10.1007/s007040050040.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Dvorak, M. J., E. D. Stoutenburg, C. L. Archer, W. Kempton, and M. Z. Jacobson, 2012: Where is the ideal location for a US East Coast offshore grid? Geophys. Res. Lett., 39, L06804, doi:10.1029/2011GL050659.

    • Search Google Scholar
    • Export Citation
  • Elliott, D. L., C. G. Holladay, W. R. Barchet, H. P. Foote, and W. F. Sandusky, 1986: Wind energy resource atlas of the United States. U.S. Department of Energy Rep. DOE/CH10093-4, 210 pp.

  • Enloe, J., J. J. O’Brien, and S. R. Smith, 2004: ENSO impacts on peak wind gusts in the United States. J. Climate, 17, 17281737, doi:10.1175/1520-0442(2004)017<1728:EIOPWG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harper, B. R., R. W. Katz, and R. C. Harriss, 2007: Statistical methods for quantifying the effect of the El Niño–Southern Oscillation on wind power in the northern Great Plains of the United States. Wind Eng., 31, 123137, doi:10.1260/030952407781998792.

    • Search Google Scholar
    • Export Citation
  • Hua, G., X. Ming, and H. Qi, 2010: Changes in near-surface wind speed in China: 1969–2005. Int. J. Climatol., 31, 349358.

  • Kapela, A. F., P. W. Leftwich, and R. Van Ess, 1995: Forecasting the impacts of strong wintertime post-cold front winds in the northern plains. Wea. Forecasting, 10, 229244, doi:10.1175/1520-0434(1995)010<0229:FTIOSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kempton, W., F. Pimenta, D. E. Veron, and B. A. Colle, 2010: Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. USA, 107, 72407245, doi:10.1073/pnas.0909075107.

    • Search Google Scholar
    • Export Citation
  • Klink, K., 1999a: Climatological mean and interannual variance of United States surface wind speed, direction and velocity. Int. J. Climatol., 19, 471488, doi:10.1002/(SICI)1097-0088(199904)19:5<471::AID-JOC367>3.0.CO;2-X.

    • Search Google Scholar
    • Export Citation
  • Klink, K., 1999b: Trends in mean monthly maximum and minimum surface wind speeds in the conterminous United States, 1961 to 1990. Climate Res., 13, 193205, doi:10.3354/cr013193.

    • Search Google Scholar
    • Export Citation
  • Klink, K., 2002: Trends and interannual variability of wind speed distributions in Minnesota. J. Climate, 15, 33113317, doi:10.1175/1520-0442(2002)015<3311:TAIVOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klink, K., 2007: Atmospheric circulation effects on wind speed variability at turbine height. J. Appl. Meteor. Climatol., 46, 445456, doi:10.1175/JAM2466.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. Zhong, X. Bian, and W. E. Heilman, 2010: Climate and climate variability of the wind power resources in the Great Lakes region of the United States. J. Geophys. Res., 115, D18107, doi:10.1029/2009JD013415.

    • Search Google Scholar
    • Export Citation
  • Liléo, S., and O. Petrik, 2011: Investigation on the use of NCEP/NCAR, MERRA and NCEP/CFSR reanalysis data in wind resource analysis. Proc. EWEA 2011 Conf., Brussels, Belgium, European Wind Energy Association. [Available online at http://www.ewea.org/annual2011/conference/conference-proceedings/.]

  • Long, C. S., A. H. Butler, S. Zhou, S. K. Yang, R. Lin, and J. Wild, 2011: Stratospheric characteristics of the NCEP climate forecast system reanalysis. 16th Conf. on the Middle Atmosphere, Seattle, WA, Amer. Meteor. Soc., 522. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper186058.html.]

  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Here, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., T. G. Van Niel, M. L. Roderick, L. T. Li, X. G. Mo, N. E. Zimmermann, and D. R. Schmatz, 2010: Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys. Res. Lett., 37, L06402, doi:10.1029/2009GL042255.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 612 pp.

  • Pryor, S. C., and J. Ledolter, 2010: Addendum to “Wind speed trends over the contiguous United States.” J. Geophys. Res., 115, D10103, doi:10.1029/2009JD013281.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2011: Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl. Acad. Sci. USA, 108, 81678171, doi:10.1073/pnas.1019388108.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, doi:10.1029/2008JD011416.

    • Search Google Scholar
    • Export Citation
  • Rahim, N. A. A., L. Juneng, and F. T. Tangang, 2013: Wind-wave simulation in South China Sea: Preliminary results of model evaluation using different wind forcing. AIP Conf. Proc.,1571, 454, doi:10.1063/1.4858697.

  • Rauthe, M., A. Hense, and H. Paeth, 2004: A model intercomparison study of climate change signals in extratropical circulation. Int. J. Climatol., 24, 643662, doi:10.1002/joc.1025.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Sailor, D. J., M. Smith, and M. Hart, 2008: Climate change implications for wind power resources in the northwest United States. Renewable Energy, 33, 23932406, doi:10.1016/j.renene.2008.01.007.

    • Search Google Scholar
    • Export Citation
  • Segal, M., Z. Pan, R. W. Arritt, and E. S. Takle, 2001: On the potential change in wind power over the US due to increases of atmospheric greenhouse gases. Renewable Energy, 24, 235243, doi:10.1016/S0960-1481(00)00194-4.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperature based on COADS data (1854–1997). J. Climate, 16, 14951510, doi:10.1175/1520-0442-16.10.1495.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smits, A., A. M. G. Klein-Tank, and G. P. Können, 2005: Trends in storminess over the Netherlands, 1962–2002. Int. J. Climatol., 25, 13311344, doi:10.1002/joc.1195.

    • Search Google Scholar
    • Export Citation
  • St. George, S., and S. A. Wolfe, 2009: El Niño stills winter winds across the southern Canadian Prairies. Geophys. Res. Lett., 36, L23806, doi:10.1029/2009GL041282.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, doi:10.1038/ngeo979.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. Gutzler, 1981: Teleconnection in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 12091225, doi:10.1175/2009JCLI3200.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., P. Storck, and T. Hiester, 2005: Improving the economics of wind through forecasting. North Amer. Windpower, 2, 2022.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, 52–57.

  • Xu, M., C.-P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, and H. Zhang, 2006: Steady decline of East Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res., 111, D24111, doi:10.1029/2006JD007337.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 25112539, doi:10.1007/s00382-010-0954-4.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett., 38, L13402, doi:10.1029/2011GL047792.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2210 1392 69
PDF Downloads 807 245 15