Interannual Coupling between Summertime Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change

Alexis Berg Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Alexis Berg in
Current site
Google Scholar
PubMed
Close
,
Benjamin R. Lintner Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
,
Kirsten Findell Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Kirsten Findell in
Current site
Google Scholar
PubMed
Close
,
Sonia I. Seneviratne Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland

Search for other papers by Sonia I. Seneviratne in
Current site
Google Scholar
PubMed
Close
,
Bart van den Hurk Royal Netherlands Meteorological Institute, De Bilt, The Netherlands

Search for other papers by Bart van den Hurk in
Current site
Google Scholar
PubMed
Close
,
Agnès Ducharne UMR METIS, Université Pierre et Marie Curie/Centre National de la Recherche Scientifiques, Paris, France

Search for other papers by Agnès Ducharne in
Current site
Google Scholar
PubMed
Close
,
Frédérique Chéruy Laboratoire de Météorologie Dynamique/L’Institut Pierre-Simon Laplace, Université Pierre et Marie Curie, Paris, France

Search for other papers by Frédérique Chéruy in
Current site
Google Scholar
PubMed
Close
,
Stefan Hagemann Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Stefan Hagemann in
Current site
Google Scholar
PubMed
Close
,
David M. Lawrence National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Sergey Malyshev Princeton University, Princeton, New Jersey

Search for other papers by Sergey Malyshev in
Current site
Google Scholar
PubMed
Close
,
Arndt Meier Centre for Environmental and Climate Research, Lund University, Lund, Sweden

Search for other papers by Arndt Meier in
Current site
Google Scholar
PubMed
Close
, and
Pierre Gentine Columbia University, New York, New York

Search for other papers by Pierre Gentine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Widespread negative correlations between summertime-mean temperatures and precipitation over land regions are a well-known feature of terrestrial climate. This behavior has generally been interpreted in the context of soil moisture–atmosphere coupling, with soil moisture deficits associated with reduced rainfall leading to enhanced surface sensible heating and higher surface temperature. The present study revisits the genesis of these negative temperature–precipitation correlations using simulations from the Global Land–Atmosphere Coupling Experiment–phase 5 of the Coupled Model Intercomparison Project (GLACE-CMIP5) multimodel experiment. The analyses are based on simulations with five climate models, which were integrated with prescribed (noninteractive) and with interactive soil moisture over the period 1950–2100. While the results presented here generally confirm the interpretation that negative correlations between seasonal temperature and precipitation arise through the direct control of soil moisture on surface heat flux partitioning, the presence of widespread negative correlations when soil moisture–atmosphere interactions are artificially removed in at least two out of five models suggests that atmospheric processes, in addition to land surface processes, contribute to the observed negative temperature–precipitation correlation. On longer time scales, the negative correlation between precipitation and temperature is shown to have implications for the projection of climate change impacts on near-surface climate: in all models, in the regions of strongest temperature–precipitation anticorrelation on interannual time scales, long-term regional warming is modulated to a large extent by the regional response of precipitation to climate change, with precipitation increases (decreases) being associated with minimum (maximum) warming. This correspondence appears to arise largely as the result of soil moisture–atmosphere interactions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00324.s1.

Current affiliation: International Research Institute for Climate and Society, Earth Institute at Columbia University, Palisades, New York.

Corresponding author address: Alexis Berg, International Research Institute for Climate and Society, Earth Institute at Columbia University, 61 Rt 9W, Palisades, NY 10964. E-mail: aberg@iri.columbia.edu

Abstract

Widespread negative correlations between summertime-mean temperatures and precipitation over land regions are a well-known feature of terrestrial climate. This behavior has generally been interpreted in the context of soil moisture–atmosphere coupling, with soil moisture deficits associated with reduced rainfall leading to enhanced surface sensible heating and higher surface temperature. The present study revisits the genesis of these negative temperature–precipitation correlations using simulations from the Global Land–Atmosphere Coupling Experiment–phase 5 of the Coupled Model Intercomparison Project (GLACE-CMIP5) multimodel experiment. The analyses are based on simulations with five climate models, which were integrated with prescribed (noninteractive) and with interactive soil moisture over the period 1950–2100. While the results presented here generally confirm the interpretation that negative correlations between seasonal temperature and precipitation arise through the direct control of soil moisture on surface heat flux partitioning, the presence of widespread negative correlations when soil moisture–atmosphere interactions are artificially removed in at least two out of five models suggests that atmospheric processes, in addition to land surface processes, contribute to the observed negative temperature–precipitation correlation. On longer time scales, the negative correlation between precipitation and temperature is shown to have implications for the projection of climate change impacts on near-surface climate: in all models, in the regions of strongest temperature–precipitation anticorrelation on interannual time scales, long-term regional warming is modulated to a large extent by the regional response of precipitation to climate change, with precipitation increases (decreases) being associated with minimum (maximum) warming. This correspondence appears to arise largely as the result of soil moisture–atmosphere interactions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00324.s1.

Current affiliation: International Research Institute for Climate and Society, Earth Institute at Columbia University, Palisades, New York.

Corresponding author address: Alexis Berg, International Research Institute for Climate and Society, Earth Institute at Columbia University, 61 Rt 9W, Palisades, NY 10964. E-mail: aberg@iri.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.06 MB)
Save
  • Adler, R. F., G. J. Gu, J. J. Wang, G. J. Huffman, S. Curtis, and D. Bolvin, 2008: Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J. Geophys. Res., 113, D22104, doi:10.1029/2008JD010536.

    • Search Google Scholar
    • Export Citation
  • Berg, A., K. Findell, B. Lintner, P. Gentine, and C. Kerr, 2013: Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data. J. Hydrometeor., 14, 722743, doi:10.1175/JHM-D-12-0111.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688, doi:10.1175/BAMS-85-11-1673.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and F. Boberg, 2012: Temperature dependent climate projection deficiencies in CMIP5 models. Geophys. Res. Lett., 39, L24705, doi:10.1029/2012GL053650.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., R. Stöckli, E. B. Jaeger, S. Levis, and S. I. Seneviratne, 2011: COSMO-CLM2: A new version of the COSMO-CLM model coupled to the Community Land Model. Climate Dyn., 37, 18891907, doi:10.1007/s00382-011-1019-z.

    • Search Google Scholar
    • Export Citation
  • Déry, S. J., and E. F. Wood, 2005: Observed twentieth century land surface air temperature and precipitation covariability. Geophys. Res. Lett., 32, L21414, doi:10.1029/2005GL024234.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeor., 13, 981995, doi:10.1175/JHM-D-11-0104.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, doi:10.1175/JHM-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., J. M. Wallace, and D. P. Lettenmaier, 2000: Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. J. Climate, 13, 26412651, doi:10.1175/1520-0442(2000)013<2641:DOEDMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., I. Rodriguez-Iturbe, and R. L. Bras, 1992: Variability in large-scale water-balance with land surface–atmosphere interaction. J. Climate, 5, 798813, doi:10.1175/1520-0442(1992)005<0798:VILSWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and P. Viterbo, 2006: Sensitivity to soil water initial conditions. J. Climate, 19, 36593680, doi:10.1175/JCLI3810.1.

  • Fischer, E. M., and C. Schar, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917935, doi:10.1007/s00382-008-0473-8.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Luthi, and C. Schär, 2007: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 1443–1462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. Selten, B. van den Huk, W. Hazeleger, and X. L. Wang, 2009: Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys. Res. Lett., 36, L04705, doi:10.1029/2008GL036617.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2012: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Z. Guo, R. Yang, P. A. Dirmeyer, K. Mitchell, and M. J. Puma, 2009a: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, doi:10.1175/2009JCLI2832.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009b: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Krakauer, N., B. Cook, and M. Puma, 2010: Contribution of soil moisture feedback to hydroclimatic variability. Hydrol. Earth Syst. Sci., 14, 505520, doi:10.5194/hess-14-505-2010.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., A. van Ulden, B. van den Hurk, and E. van Meijgaard, 2007: Summertime inter-annual temperature variability in an ensemble of regional model simulations: Analysis of the surface energy budget. Climatic Change, 81, 233247, doi:10.1007/s10584-006-9229-9.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, doi:10.1175/JCLI-D-13-00474.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and J. Williams, 1978: The correlation between temperature and precipitation in the United States and Europe. Mon. Wea. Rev., 106, 142147, doi:10.1175/1520-0493(1978)106<0142:TCBTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. J. van den Berg, A. J. Teuling, and R. A. M. de Jeu, 2012: Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, doi:10.1073/pnas.1204330109.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128–134, doi:10.1002/2013GL058055.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., L. E. Back, P. A. O’Gorman, and K. E. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, doi:10.1029/2009GL039667.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., P. A. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 27842800, doi:10.1175/2011JCLI3876.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., M. Münnich, H. Su, J. E. Meyerson, and C. E. Holloway, 2006: Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA, 103, 61106115, doi:10.1073/pnas.0601798103.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegerl, 2009: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, 73247329, doi:10.1073/pnas.0808533106.

    • Search Google Scholar
    • Export Citation
  • Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S. I. Seneviratne, 2012: Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Climate Change, 2, 736741, doi:10.1038/nclimate1536.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2012: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org/.]

  • Rebetez, M., 1996: Seasonal relationship between temperature, precipitation and snow cover in a mountainous region. Theor. Appl. Climatol., 54, 99106, doi:10.1007/BF00865152.

    • Search Google Scholar
    • Export Citation
  • Rusticucci, M., and O. Penalba, 2000: Interdecadal changes in the precipitation seasonal cycle over southern South America and their relationship with surface temperature. Climate Res., 16, 115, doi:10.3354/cr016001.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125–161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2013: Impact of soil moisture–climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, doi:10.1002/grl.50956.

    • Search Google Scholar
    • Export Citation
  • Shinoda, M., and Y. Yamaguchi, 2003: Influence of soil moisture anomaly on temperature in the Sahel: A comparison between wet and dry decades. J. Hydrometeor., 4, 437447, doi:10.1175/1525-7541(2003)4<437:IOSMAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stegehuis, A., R. Vautard, P. Ciais, R. Teuling, M. Jung, and P. Yiou, 2013: Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Climate Dyn., 41, 455477, doi:10.1007/s00382-012-1559-x.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B.-W. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., and G. Leng, 2013: Changes in cloud cover, precipitation, and summer temperature in North America from 1982 to 2009. J. Climate, 26, 17331744, doi:10.1175/JCLI-D-12-00225.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., G. Leng, and P. Ya. Groisman, 2012: European hot summers associated with a reduction of cloudiness. J. Climate, 25, 36373644, doi:10.1175/JCLI-D-12-00040.1.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, L02404, doi:10.1029/2008GL036584.

    • Search Google Scholar
    • Export Citation
  • Tout, D. G., 1987: Precipitation–temperature relationship in England and Wales summers. Int. J. Climatol., 7, 181184, doi:10.1002/joc.3370070208.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi:10.1029/2005GL022760.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wu, R., J. Chen, and Z. Wen, 2013: Precipitation–surface temperature relationship in the IPCC CMIP5 models. Adv. Atmos. Sci., 30, 766778, doi:10.1007/s00376-012-2130-8.

    • Search Google Scholar
    • Export Citation
  • Zampieri, M., F. D’Andrea, R. Vautard, P. Ciais, N. de Noblet-Ducoudré, and P. Yiou, 2009: Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Climate, 22, 47474758, doi:10.1175/2009JCLI2568.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., and M. A. K. Khalil, 1993: The relationship between precipitation and temperature over the contiguous United States. J. Climate, 6, 12321236, doi:10.1175/1520-0442(1993)006<1232:TRBPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3776 1586 128
PDF Downloads 1957 488 41