Extreme Rainfall of the South American Monsoon System: A Dataset Comparison Using Complex Networks

Niklas Boers * Potsdam Institute for Climate Impact Research, Potsdam, and Department of Physics, Humboldt University Berlin, Berlin, Germany

Search for other papers by Niklas Boers in
Current site
Google Scholar
PubMed
Close
,
Bodo Bookhagen Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany

Search for other papers by Bodo Bookhagen in
Current site
Google Scholar
PubMed
Close
,
José Marengo Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisa Espacial, Cachoeira Paulista, Saõ Paulo, Brazil

Search for other papers by José Marengo in
Current site
Google Scholar
PubMed
Close
,
Norbert Marwan Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Norbert Marwan in
Current site
Google Scholar
PubMed
Close
,
Jin-Song von Storch Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Jin-Song von Storch in
Current site
Google Scholar
PubMed
Close
, and
Jürgen Kurths ** Potsdam Institute for Climate Impact Research, Potsdam, and Department of Physics, Humboldt University Berlin, Berlin, Germany, and Department of Control Theory, Nizhny Novgorod State University, Nizhny Novgorod, Russia

Search for other papers by Jürgen Kurths in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the authors compare six different rainfall datasets for South America with a focus on their representation of extreme rainfall during the monsoon season (December–February): the gauge-calibrated TRMM 3B42 V7 satellite product; the near-real-time TRMM 3B42 V7 RT, the GPCP 1° daily (1DD) V1.2 satellite–gauge combination product, the Interim ECMWF Re-Analysis (ERA-Interim) product; output of a high-spatial-resolution run of the ECHAM6 global circulation model; and output of the regional climate model Eta. For the latter three, this study can be understood as a model evaluation. In addition to statistical values of local rainfall distributions, the authors focus on the spatial characteristics of extreme rainfall covariability. Since traditional approaches based on principal component analysis are not applicable in the context of extreme events, they apply and further develop methods based on complex network theory. This way, the authors uncover substantial differences in extreme rainfall patterns between the different datasets: (i) The three model-derived datasets yield very different results than the satellite–gauge combinations regarding the main climatological propagation pathways of extreme events as well as the main convergence zones of the monsoon system. (ii) Large discrepancies are found for the development of mesoscale convective systems in southeastern South America. (iii) Both TRMM datasets and ECHAM6 indicate a linkage of extreme rainfall events between the central Amazon basin and the eastern slopes of the central Andes, but this pattern is not reproduced by the remaining datasets. The authors’ study suggests that none of the three model-derived datasets adequately captures extreme rainfall patterns in South America.

Corresponding author address: Niklas Boers, Potsdam Institute for Climate Impact Research, Telegraphenberg A31, 14412 Potsdam, Brandenburg, Germany. E-mail: boers@pik-potsdam.de

Abstract

In this study, the authors compare six different rainfall datasets for South America with a focus on their representation of extreme rainfall during the monsoon season (December–February): the gauge-calibrated TRMM 3B42 V7 satellite product; the near-real-time TRMM 3B42 V7 RT, the GPCP 1° daily (1DD) V1.2 satellite–gauge combination product, the Interim ECMWF Re-Analysis (ERA-Interim) product; output of a high-spatial-resolution run of the ECHAM6 global circulation model; and output of the regional climate model Eta. For the latter three, this study can be understood as a model evaluation. In addition to statistical values of local rainfall distributions, the authors focus on the spatial characteristics of extreme rainfall covariability. Since traditional approaches based on principal component analysis are not applicable in the context of extreme events, they apply and further develop methods based on complex network theory. This way, the authors uncover substantial differences in extreme rainfall patterns between the different datasets: (i) The three model-derived datasets yield very different results than the satellite–gauge combinations regarding the main climatological propagation pathways of extreme events as well as the main convergence zones of the monsoon system. (ii) Large discrepancies are found for the development of mesoscale convective systems in southeastern South America. (iii) Both TRMM datasets and ECHAM6 indicate a linkage of extreme rainfall events between the central Amazon basin and the eastern slopes of the central Andes, but this pattern is not reproduced by the remaining datasets. The authors’ study suggests that none of the three model-derived datasets adequately captures extreme rainfall patterns in South America.

Corresponding author address: Niklas Boers, Potsdam Institute for Climate Impact Research, Telegraphenberg A31, 14412 Potsdam, Brandenburg, Germany. E-mail: boers@pik-potsdam.de
Save
  • Anabor, V., D. J. Stensrud, and O. L. L. de Moraes, 2008: Serial upstream-propagating mesoscale convective system events over southeastern South America. Mon. Wea. Rev., 136, 30873105, doi:10.1175/2007MWR2334.1.

    • Search Google Scholar
    • Export Citation
  • Boers, N., B. Bookhagen, N. Marwan, J. Kurths, and J. Marengo, 2013: Complex networks identify spatial patterns of extreme rainfall events of the South American monsoon system. Geophys. Res. Lett., 40, 43864392, doi:10.1002/grl.50681.

    • Search Google Scholar
    • Export Citation
  • Boers, N., B. Bookhagen, H. M. J. Barbosa, N. Marwan, J. Kurths, and J. A. Marengo, 2014a: Prediction of extreme floods in the eastern central Andes based on a complex network approach. Nat. Commun., 5, 5199, doi:10.1038/ncomms6199.

    • Search Google Scholar
    • Export Citation
  • Boers, N., R. V. Donner, B. Bookhagen, and J. Kurths, 2014b: Complex network analysis helps to identify impacts of the El Niño Southern Oscillation on moisture divergence in South America. Climate Dyn., doi:10.1007/s00382-014-2265-7, in press.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and M. R. Strecker, 2008: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys. Res. Lett.,35, L06403, doi:10.1029/2007GL032011.

  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2002: Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Climate, 15, 23772394, doi:10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, A. N. D. Posadas, R. Quiroz, B. Bookhagen, and B. Liebmann, 2012: Precipitation characteristics of the South American monsoon system derived from multiple datasets. J. Climate, 25, 46004620, doi:10.1175/JCLI-D-11-00335.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the continental United States. Water Resour. Res.,49, 8174–8186, doi:10.1002/2012WR012795.

  • Chou, S. C., and Coauthors, 2012: Downscaling of South America present climate driven by 4-member HadCM3 runs. Climate Dyn., 38, 635653, doi:10.1007/s00382-011-1002-8.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., M. S. Dias, and C. Nobre, 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev.,123, 3163–3174, doi:10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2.

  • Coppus, R., and A. C. Imeson, 2002: Extreme events controlling erosion and sediment transport in a semi-arid sub-Andean valley. Earth Surf. Processes Landforms,27, 1365–1375, doi:10.1002/esp.435.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Donges, J. F., Y. Zou, N. Marwan, and J. Kurths, 2009: The backbone of the climate network. Europhys. Lett.,87, 48007, doi:10.1209/0295-5075/87/48007.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., and T. L. Mote, 2010: A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol., 30, 418431, doi:10.1002/joc.1893.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., T. L. Mote, and J. M. Shepherd, 2009: The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Climate, 22, 45904605, doi:10.1175/2009JCLI2858.1.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. B., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, doi:10.1002/qj.49712051806.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., 2000: Intraseasonal variability of moisture and rainfall over the South American altiplano. Mon. Wea. Rev., 128, 33373346, doi:10.1175/1520-0493(2000)128<3337:IVOMAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hertwig, E., J.-S. von Storch, D. Handorf, K. Dethloff, I. Fast, and T. Krismer, 2014: Effect of horizontal resolution on ECHAM6-AMIP performance. Climate Dyn., doi:10.1007/s00382-014-2396-x, in press.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002,0036:GPAODD.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, C. S. Vera, A. C. Saulo, and L. M. V. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Climate, 17, 38293842, doi:10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malik, N., B. Bookhagen, N. Marwan, and J. Kurths, 2012: Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Climate Dyn., 39, 971987, doi:10.1007/s00382-011-1156-4.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2006: On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Rev. Bras. Meteor., 21, 119.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 22612280, doi:10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 121, doi:10.1002/joc.2254.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., M. Valverde, and G. Obregon, 2013a: Observed and projected changes in rainfall extremes in the metropolitan area of São Paulo. Climate Res., 57, 6172, doi:10.3354/cr01160.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2013b: Simulation of rainfall anomalies leading to the 2005 drought in Amazonia using the CLARIS LPB regional climate models. Climate Dyn., 41, 29372955, doi:10.1007/s00382-013-1919-1.

    • Search Google Scholar
    • Export Citation
  • Matsuyama, H., J. A. Marengo, G. O. Obregon, and C. A. Nobre, 2002: Spatial and temporal variabilities of rainfall in tropical South America as derived from Climate Prediction Center Merged Analysis of Precipitation. Int. J. Climatol., 22, 175195, doi:10.1002/joc.724.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models. Riv. Meteor. Aeronaut., 44, 195202.

  • Mesinger, F., and T. L. Black, 1992: On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteor. Atmos. Phys., 50, 4760, doi:10.1007/BF01025504.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2012: An upgraded version of the Eta model. Meteor. Atmos. Phys., 116, 6379, doi:10.1007/s00703-012-0182-z.

    • Search Google Scholar
    • Export Citation
  • Moreiras, S. M., 2005: Climatic effect of ENSO associated with landslide occurrence in the central Andes, Mendoza Province, Argentina. Landslides,2, 53–59, doi:10.1007/s10346-005-0046-4.

  • Negrón Juárez, R. I., W. Li, R. Fu, K. Fernandes, and A. de Oliveira Cardoso, 2009: Comparison of precipitation datasets over the tropical South American and African continents. J. Hydrometeor., 10, 289299, doi:10.1175/2008JHM1023.1.

    • Search Google Scholar
    • Export Citation
  • O’Hare, G., and S. Rivas, 2005: The landslide hazard and human vulnerability in La Paz City, Bolivia. Geogr. J., 171, 239258, doi:10.1111/j.1475-4959.2005.00163.x.

    • Search Google Scholar
    • Export Citation
  • Paegle, J. N., and K. C. Mo, 2002: Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J. Climate, 15,13891407, doi:10.1175/1520-0442(2002)015<1389:LBSRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pesquero, J. F., S. C. Chou, C. A. Nobre, and J. A. Marengo, 2010: Climate downscaling over South America for 1961–1970 using the Eta model. Theor. Appl. Climatol., 99, 7593, doi:10.1007/s00704-009-0123-z.

    • Search Google Scholar
    • Export Citation
  • Quiroga, R. Q., T. Kreuz, and P. Grassberger, 2002: Event synchronization: A simple and fast method to measure synchronicity and time delay patterns. Phys. Rev., 66E, 041904, doi:10.1103/PhysRevE.66.041904.

    • Search Google Scholar
    • Export Citation
  • Rheinwalt, A., N. Marwan, J. Kurths, P. Werner, and F.-W. Gerstengarbe, 2012: Boundary effects in network measures of spatially embedded networks. Europhys. Lett.,100, 28002, doi:10.1209/0295-5075/100/28002.

  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Schuster, R. L., D. A. Salcedo, and L. Valenzuela, 2002: Overview of catastrophic landslides of South America in the twentieth century. Catastrophic Landslides: Effects, Occurrence, and Mechanisms, S. G. Evans and J. V. DeGraff, Eds., Reviews in Engineering Geology, Vol. 15, Geological Society of America, 1–33.

  • Silva, V. B. S., V. E. Kousky, and R. W. Higgins, 2011: Daily precipitation statistics for South America: An intercomparison between NCEP reanalyses and observations. J. Hydrometeor., 12, 101117, doi:10.1175/2010JHM1303.1.

    • Search Google Scholar
    • Export Citation
  • Solman, S. A., M. N. Nuñez, and M. F. Cabré, 2008: Regional climate change experiments over southern South America. I: Present climate. Climate Dyn., 30, 533552, doi:10.1007/s00382-007-0304-3.

    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and Coauthors, 2013: Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Model performance and uncertainties. Climate Dyn., 41, 11391157, doi:10.1007/s00382-013-1667-2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Stolbova, V., P. Martin, B. Bookhagen, N. Marwan, and J. Kurths, 2014: Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. Nonlinear Processes Geophys., 21, 901917, doi:10.5194/npg-21-901-2014.

    • Search Google Scholar
    • Export Citation
  • Tsonis, A., K. Swanson, and S. Kravtsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett.,34, L13705, doi:10.1029/2007GL030288.

  • Urrutia, R., and M. Vuille, 2009: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophy. Res.,114, D02108, doi:10.1029/2008JD011021.

  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, doi:10.1175/JCLI3896.1.

    • Search Google Scholar
    • Export Citation
  • Xue, X., Y. Hong, A. S. Limaye, J. J. Gourley, G. J. Huffman, S. I. Khan, C. Dorji, and S. Chen, 2013: Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol., 499, 9199, doi:10.1016/j.jhydrol.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, K., A. Gozolchiani, and S. Havlin, 2008: Climate networks around the globe are significantly affected by El Niño. Phys. Rev. Lett.,100, 228501, doi:10.1103/PhysRevLett.100.228501.

  • Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn., 41, 31273143, doi:10.1007/s00382-012-1582-y.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., K. M. Lau, J. O. F. Climate, and G. Space, 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
  • Zulkafli, Z., W. Buytaert, C. Onof, B. Manz, E. Tarnavsky, W. Lavado, and J.-L. Guyot, 2014: A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon River basins. J. Hydrometeor.,15, 581–592, doi:10.1175/JHM-D-13-094.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1577 690 60
PDF Downloads 733 133 20