Parameter Optimization in an Intermediate Coupled Climate Model with Biased Physics

Xuefeng Zhang GFDL–Wisconsin Joint Visiting Program, Princeton, New Jersey, and Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin, China

Search for other papers by Xuefeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Shaoqing Zhang NOAA/GFDL, Princeton University, Princeton, New Jersey

Search for other papers by Shaoqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Zhengyu Liu Department of Atmospheric and Oceanic Sciences, and Center for Climate Research, University of Wisconsin–Madison, Madison, Wisconsin, and Laboratory for Climate and Ocean–Atmosphere Studies, Peking University, Beijing, China

Search for other papers by Zhengyu Liu in
Current site
Google Scholar
PubMed
Close
,
Xinrong Wu GFDL–Wisconsin Joint Visiting Program, Princeton, New Jersey, and Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin, China

Search for other papers by Xinrong Wu in
Current site
Google Scholar
PubMed
Close
, and
Guijun Han Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin, China

Search for other papers by Guijun Han in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Imperfect physical parameterization schemes in a coupled climate model are an important source of model biases that adversely impact climate prediction. However, how observational information should be used to optimize physical parameterizations through parameter estimation has not been fully studied. Using an intermediate coupled ocean–atmosphere model, the authors investigate parameter optimization when the assimilation model contains biased physics within a biased assimilation experiment framework. Here, the biased physics is induced by using different outgoing longwave radiation schemes in the assimilation model and the “truth” model that is used to generate simulated observations. While the stochastic physics, implemented by initially perturbing the physical parameters, can significantly enhance the ensemble spread and improve the representation of the model ensemble, the parameter estimation is able to mitigate the model biases induced by the biased physics. Furthermore, better results for climate estimation and prediction can be obtained when only the most influential physical parameters are optimized and allowed to vary geographically. In addition, the parameter optimization with the biased model physics improves the performance of the climate estimation and prediction in the deep ocean significantly, even if there is no direct observational constraint on the low-frequency component of the state variables. These results provide some insight into decadal predictions in a coupled ocean–atmosphere general circulation model that includes imperfect physical schemes that are initialized from the climate observing system.

Corresponding author address: Dr. Xuefeng Zhang, MEIT, National Marine Data and Information Service, No. 93, 6 Wei Road, Tianjin 300171, China. E-mail: xfz.nmdis@hotmail.com

Abstract

Imperfect physical parameterization schemes in a coupled climate model are an important source of model biases that adversely impact climate prediction. However, how observational information should be used to optimize physical parameterizations through parameter estimation has not been fully studied. Using an intermediate coupled ocean–atmosphere model, the authors investigate parameter optimization when the assimilation model contains biased physics within a biased assimilation experiment framework. Here, the biased physics is induced by using different outgoing longwave radiation schemes in the assimilation model and the “truth” model that is used to generate simulated observations. While the stochastic physics, implemented by initially perturbing the physical parameters, can significantly enhance the ensemble spread and improve the representation of the model ensemble, the parameter estimation is able to mitigate the model biases induced by the biased physics. Furthermore, better results for climate estimation and prediction can be obtained when only the most influential physical parameters are optimized and allowed to vary geographically. In addition, the parameter optimization with the biased model physics improves the performance of the climate estimation and prediction in the deep ocean significantly, even if there is no direct observational constraint on the low-frequency component of the state variables. These results provide some insight into decadal predictions in a coupled ocean–atmosphere general circulation model that includes imperfect physical schemes that are initialized from the climate observing system.

Corresponding author address: Dr. Xuefeng Zhang, MEIT, National Marine Data and Information Service, No. 93, 6 Wei Road, Tianjin 300171, China. E-mail: xfz.nmdis@hotmail.com
Save
  • Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modell., 8, 135154, doi:10.1016/j.ocemod.2003.12.004.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 2002: Inverse Modelling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, doi:10.1256/qj.05.137.

  • Dee, D. P., and A. M. Da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269295, doi:10.1002/qj.49712454512.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and J. Flöter, 2011: Conceptual understanding of climate change with a globally resolved energy balance model. Climate Dyn., 37, 21432165, doi:10.1007/s00382-011-1026-0.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer Press, 279 pp.

  • Fanning, A. F., and A. J. Weaver, 1996: An atmospheric energy-moisture balance model: Climatology, interpentadal climate change, and coupling to an ocean general circulation model. J. Geophys. Res., 101, 15 11115 128, doi:10.1029/96JD01017.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., C. Sun, and M. Ghil, 2008: Data assimilation for a coupled ocean–atmosphere model. Part II: Parameter estimation. Mon. Wea. Rev., 136, 50625076, doi:10.1175/2008MWR2544.1.

    • Search Google Scholar
    • Export Citation
  • Kulhavy, R., 1993: Implementation of Bayesian parameter estimation in adaptive control and signal processing. J. Roy. Stat. Soc., 42D, 471482.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Liu, S. Zhang, X. Rong, R. Jacob, S. Wu, and F. Lu, 2014: Ensemble-based parameter estimation in a coupled GCM using the adaptive spatial average method. J. Climate, 27, 40024014, doi:10.1175/JCLI-D-13-00091.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1993: Interannual positive feedbacks in a simple extratropical air–sea coupling system. J. Atmos. Sci., 50, 30223028, doi:10.1175/1520-0469(1993)050<3022:IPFIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 1987: Climate–chemical interactions and effects of changing atmosphere atmospheric trace gases. Rev. Geophys., 25, 14411482, doi:10.1029/RG025i007p01441.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Tao, G., 2003: Adaptive Control Design and Analysis. John Wiley & Sons, 640 pp.

  • Thompson, S. J., and S. G. Warren, 1982: Parameterization of outgoing infrared radiation derived from detailed radiative calculations. J. Atmos. Sci., 39, 26672680, doi:10.1175/1520-0469(1982)039<2667:POOIRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39, 361428, doi:10.1080/07055900.2001.9649686.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. Zhang, Z. Liu, A. Rosati, T. Delworth, and Y. Liu, 2012: Impact of geographic-dependent parameter optimization on climate estimation and prediction: Simulation with an intermediate coupled model. Mon. Wea. Rev., 140, 39563971, doi:10.1175/MWR-D-11-00298.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. Zhang, Z. Liu, A. Rosati, and T. Delworth, 2013: A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model. Climate Dyn.,40, 1789–1798, doi:10.1007/s00382-012-1385-1.

  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Yang, X. S., and T. Delsole, 2009: Using the ensemble Kalman filter to estimate multiplicative model parameters. Tellus, 61A, 601609, doi:10.1111/j.1600-0870.2009.00407.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., 2011a: Impact of observation-optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model. Geophys. Res. Lett., 38, L02702, doi:10.1029/2010GL046133.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., 2011b: A study of impacts of coupled model initial shocks and state-parameter optimization on climate prediction using a simple pycnocline prediction model. J. Climate, 24, 6210–6226, doi:10.1175/JCLI-D-10-05003.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus, 55A, 126147, doi:10.1034/j.1600-0870.2003.00010.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, doi:10.1175/MWR3466.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Z. Liu, A. Rosati, and T. Delworth, 2012: A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus, 64A, 10963, doi:10.3402/tellusa.v64i0.10963.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1692 1319 72
PDF Downloads 233 60 5