Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models

Stephen M. Griffies * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
,
Michael Winton * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Michael Winton in
Current site
Google Scholar
PubMed
Close
,
Whit G. Anderson * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Whit G. Anderson in
Current site
Google Scholar
PubMed
Close
,
Rusty Benson * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Rusty Benson in
Current site
Google Scholar
PubMed
Close
,
Thomas L. Delworth * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas L. Delworth in
Current site
Google Scholar
PubMed
Close
,
Carolina O. Dufour Princeton University, Princeton, New Jersey

Search for other papers by Carolina O. Dufour in
Current site
Google Scholar
PubMed
Close
,
John P. Dunne * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by John P. Dunne in
Current site
Google Scholar
PubMed
Close
,
Paul Goddard Department of Geosciences, University of Arizona, Tucson, Arizona

Search for other papers by Paul Goddard in
Current site
Google Scholar
PubMed
Close
,
Adele K. Morrison Princeton University, Princeton, New Jersey

Search for other papers by Adele K. Morrison in
Current site
Google Scholar
PubMed
Close
,
Anthony Rosati * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Anthony Rosati in
Current site
Google Scholar
PubMed
Close
,
Andrew T. Wittenberg * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Andrew T. Wittenberg in
Current site
Google Scholar
PubMed
Close
,
Jianjun Yin Department of Geosciences, University of Arizona, Tucson, Arizona

Search for other papers by Jianjun Yin in
Current site
Google Scholar
PubMed
Close
, and
Rong Zhang * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Rong Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors characterize impacts on heat in the ocean climate system from transient ocean mesoscale eddies. Their tool is a suite of centennial-scale 1990 radiatively forced numerical climate simulations from three GFDL coupled models comprising the Climate Model, version 2.0–Ocean (CM2-O), model suite. CM2-O models differ in their ocean resolution: CM2.6 uses a 0.1° ocean grid, CM2.5 uses an intermediate grid with 0.25° spacing, and CM2-1deg uses a nominal 1.0° grid.

Analysis of the ocean heat budget reveals that mesoscale eddies act to transport heat upward in a manner that partially compensates (or offsets) for the downward heat transport from the time-mean currents. Stronger vertical eddy heat transport in CM2.6 relative to CM2.5 accounts for the significantly smaller temperature drift in CM2.6. The mesoscale eddy parameterization used in CM2-1deg also imparts an upward heat transport, yet it differs systematically from that found in CM2.6. This analysis points to the fundamental role that ocean mesoscale features play in transient ocean heat uptake. In general, the more accurate simulation found in CM2.6 provides an argument for either including a rich representation of the ocean mesoscale in model simulations of the mean and transient climate or for employing parameterizations that faithfully reflect the role of eddies in both lateral and vertical heat transport.

Corresponding author address: Stephen M. Griffies, NOAA/GFDL, 201 Forrestal Rd., Princeton, NJ 08542. E-mail: stephen.griffies@noaa.gov

Abstract

The authors characterize impacts on heat in the ocean climate system from transient ocean mesoscale eddies. Their tool is a suite of centennial-scale 1990 radiatively forced numerical climate simulations from three GFDL coupled models comprising the Climate Model, version 2.0–Ocean (CM2-O), model suite. CM2-O models differ in their ocean resolution: CM2.6 uses a 0.1° ocean grid, CM2.5 uses an intermediate grid with 0.25° spacing, and CM2-1deg uses a nominal 1.0° grid.

Analysis of the ocean heat budget reveals that mesoscale eddies act to transport heat upward in a manner that partially compensates (or offsets) for the downward heat transport from the time-mean currents. Stronger vertical eddy heat transport in CM2.6 relative to CM2.5 accounts for the significantly smaller temperature drift in CM2.6. The mesoscale eddy parameterization used in CM2-1deg also imparts an upward heat transport, yet it differs systematically from that found in CM2.6. This analysis points to the fundamental role that ocean mesoscale features play in transient ocean heat uptake. In general, the more accurate simulation found in CM2.6 provides an argument for either including a rich representation of the ocean mesoscale in model simulations of the mean and transient climate or for employing parameterizations that faithfully reflect the role of eddies in both lateral and vertical heat transport.

Corresponding author address: Stephen M. Griffies, NOAA/GFDL, 201 Forrestal Rd., Princeton, NJ 08542. E-mail: stephen.griffies@noaa.gov
Save
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, doi:10.1016/j.ocemod.2003.09.003.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and R. W. Hallberg, 2006: On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modell., 11, 224233, doi:10.1016/j.ocemod.2004.12.007.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn., 56, 543567, doi:10.1007/s10236-006-0082-1.

    • Search Google Scholar
    • Export Citation
  • Bates, S., B. Fox-Kemper, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager, 2012: Mean biases, variability, and trends in air-sea fluxes and sea surface temperature in the CCSM4. J. Climate, 25, 77817801, doi:10.1175/JCLI-D-11-00442.1.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, J. Getzlaff, J.-M. Molines, and G. Madec, 2008a: Causes of interannual-decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615, doi:10.1175/2008JCLI2404.1.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., J. R. E. Lutjeharms, C. W. Böning, and M. Scheinert, 2008b: Mesoscale perturbations control inter-ocean exchange south of Africa. Geophys. Res. Lett.,35, L20602, doi:10.1029/2008GL035132.

  • Böning, C., and R. Budich, 1992: Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22, 361381, doi:10.1175/1520-0485(1992)022<0361:EDIAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: Climate and the ocean circulation III: The ocean model. Mon. Wea. Rev., 97, 806824, doi:10.1175/1520-0493(1969)097<0806:CATOC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1991: Poleward heat transport in the ocean. Tellus, 43B, 104115, doi:10.1034/j.1600-0889.1991.t01-1-00009.x.

  • Bryan, K., 1996: The role of mesoscale eddies in the poleward transport of heat by the ocean. Physica D, 98, 249257, doi:10.1016/0167-2789(96)00119-4.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and M. D. Cox, 1967: A numerical investigation of the oceanic general circulation. Tellus, 19A, 5480, doi:10.1111/j.2153-3490.1967.tb01459.x.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., J. K. Dukowicz, and R. D. Smith, 1999: On the mixing coefficient in the parameterization of bolus velocity. J. Phys. Oceanogr., 29, 24422456, doi:10.1175/1520-0485(1999)029<2442:OTMCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., M. W. Hecht, and R. D. Smith, 2007: Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system. Ocean Modell., 16, 141159, doi:10.1016/j.ocemod.2006.08.005.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., R. Thomas, J. Dennis, D. Chelton, N. Loeb, and J. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291, doi:10.1175/2010JCLI3665.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., P. Gent, and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models? J. Climate, 27, 411425, doi:10.1175/JCLI-D-12-00759.1.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 317–336.

  • Chassignet, E., and D. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime,Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 39–61, doi:10.1029/177GM05.

  • Church, J., N. White, C. Domingues, D. Monselesan, and E. Miles, 2013: Sea-level change and ocean heat-content change. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 697–726.

  • Conkright, M., and Coauthors, 2002: World Ocean Database 2001, Volume 1: Introduction. NOAA Atlas NESDIS 42, U.S. Government Printing Office 13, NOAA, Washington, D.C. 167 pp.

  • Cox, M., 1985: An eddy resolving numerical model of the ventilated thermocline. J. Phys. Oceanogr., 15, 13121324, doi:10.1175/1520-0485(1985)015<1312:AERNMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. Large, and B. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res.,115, C11005, doi:10.1029/2010JC006243.

  • Davis, R. E., 1994: Diapycnal mixing in the ocean: Equations for large-scale budgets. J. Phys. Oceanogr., 24, 777800, doi:10.1175/1520-0485(1994)024<0777:DMITOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278–282, doi:10.1038/nclimate2132.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., 1994: Heat transport by mesoscale eddies in an ocean circulation model. J. Phys. Oceanogr., 24, 353369, doi:10.1175/1520-0485(1994)024<0353:HTBMEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDLs ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and P. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, doi:10.1016/j.ocemod.2011.02.005.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. J. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, doi:10.1016/j.ocemod.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and D. Menemenlis, 2008: Can large eddy simulation techniques improve mesoscale rich ocean models? Ocean Modeling in an Eddying Regime,Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 319–337, doi:10.1029/177GM19.

  • Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: A note on the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483, doi:10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. Holland, S. Peacock, and B. Samuels, 2011: Parameterization of mixed layer eddies. III: Global implementation and impact on ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696705, doi:10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, doi:10.1175/JCLI-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Baily, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, P. S. Swathi, and G. K. Vallis, 2005: The energetics of ocean heat transport. J. Climate, 18, 26042616, doi:10.1175/JCLI3436.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., S. M. Griffies, and B. L. Samuels, 2007: Effects in a climate model of slope tapering in neutral physics schemes. Ocean Modell., 16, 116, doi:10.1016/j.ocemod.2006.06.004.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., and R. Tailleux, 2011: Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Climate Dyn., 37,893914, doi:10.1007/s00382-010-0847-6.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, doi:10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Tech. Rep. 7, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 618 pp. [Available online at http://mom-ocean.org/web/docs/project/MOM5_elements.pdf.]

  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, doi:10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28, 805830, doi:10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, doi:10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. Pacanowski, M. Schmidt, and V. Balaji, 2001: Tracer conservation with an explicit free surface method for z-coordinate ocean models. Mon. Wea. Rev., 129, 10811098, doi:10.1175/1520-0493(2001)129<1081:TCWAEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. W., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, doi:10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hecht, M., and H. Hasumi, 2008: Ocean Modeling in an Eddying Regime. Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 409 pp., doi:10.1029/GM177.

  • Hieronymus, M., and J. Nycander, 2013: The budgets of heat and salinity in NEMO. Ocean Modell., 67, 2838, doi:10.1016/j.ocemod.2013.03.006.

    • Search Google Scholar
    • Export Citation
  • Hofmann, M., and M. Morales Maqueda, 2011: The response of Southern Ocean eddies to increased midlatitude westerlies: A non-eddy resolving model study. Geophys. Res. Lett., 38, L03605, doi:10.1029/2010GL045972.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., A. J. Adcroft, S. M. Griffies, and R. W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum dissipation. Ocean Modell., 45–46, 3758, doi:10.1016/j.ocemod.2011.10.003.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The international thermodynamic equation of seawater-2010: calculation and use of thermodynamic properties. Manuals and Guides 56, Intergovernmental Oceanographic Commission, UNESCO, 196 pp. [Available online at www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, doi:10.1175/2007JPO3464.1.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., and I. Held, 2014: Energetically consistent parameterization of subgrid-scale eddies. Ocean Modell., 80, 3648, doi:10.1016/j.ocemod.2014.06.002.

    • Search Google Scholar
    • Export Citation
  • Jayne, S., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, doi:10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johns, W., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, doi:10.1175/2010JCLI3997.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, T., Y.-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and the path shifts of the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192, doi:10.1175/2008JCLI2690.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E. M., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, doi:10.1007/s00382-012-1500-3.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101, 18 17518 182, doi:10.1029/96JC00861.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level and climate change. Geophys. Res. Lett.,39, L18608, doi:10.1029/2012GL052952.

  • Large, W. G., and S. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-C., A. Rosati, and M. Spelman, 2006: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the northern Atlantic. Ocean Modell., 11, 464477, doi:10.1016/j.ocemod.2005.03.003.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. G. Nurser, A. C. Coward, and B. A. de Cuevas, 2007: Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J. Phys. Oceanogr.,37, 1376–1393, doi:10.1175/JPO3057.1.

  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197, 11791181, doi:10.1126/science.197.4309.1179.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, doi:10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Search Google Scholar
    • Export Citation
  • McClean, J., and Coauthors, 2011: A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Modell., 39, 1030, doi:10.1016/j.ocemod.2011.02.011.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and J. A. Church, 1986: Pitfalls with numerical representations of isopycnal and diapycnal mixing. J. Phys. Oceanogr., 16, 196199, doi:10.1175/1520-0485(1986)016<0196:PWTNRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1996: Modeling the oceanic general circulation. Annu. Rev. Fluid Mech., 28, 215248, doi:10.1146/annurev.fl.28.010196.001243.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Yoshida, N. Komori, X. Xie, and R. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., O. A. Saenko, A. M. Hogg, and P. Spence, 2013: The role of vertical eddy flux in southern ocean heat uptake. Geophys. Res. Lett.,40, 5445–5450, doi:10.1002/2013GL057706.

  • Murray, R., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273, doi:10.1006/jcph.1996.0136.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., 1998: The vertical component of epineutral diffusion and the dianeutral component of horizontal diffusion. J. Phys. Oceanogr., 28, 485494, doi:10.1175/1520-0485(1998)028<0485:TVCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Palter, J. B., S. M. Griffies, E. D. Galbraith, A. Gnanadesikan, B. L. Samuels, and A. Klocker, 2014: The deep ocean buoyancy budget and its temporal variability. J. Climate, 27, 551573, doi:10.1175/JCLI-D-13-00016.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S., and Coauthors, 1985: Long waves in the equatorial Pacific Ocean. Eos, Trans. Amer. Geophys. Union, 66, 154156, doi:10.1029/EO066i014p00154.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and A. C. Naveira-Garabato, 2013: Dynamics of the Southern Ocean circulation. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 471–492.

  • Roberts, M. J., and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28, 20502063, doi:10.1175/1520-0485(1998)028<2050:DWRADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2004: Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate, 17, 320, doi:10.1175/1520-0442(2004)017<0003:IOAEOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2009: Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J. Climate, 22, 25412556, doi:10.1175/2008JCLI2537.1.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, and Y. Miura, 2014: Decadal sea-level variability along the coast of japan in response to ocean circulation changes. J. Geophys. Res. Oceans,119, 266–275, doi:10.1002/2013JC009327.

  • Scaife, A. A., and Coauthors, 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett.,38, L23703, doi:10.1029/2011GL049573.

  • Shaffrey, L., and Coauthors, 2009: U.K. HiGEM: The new U.K. high-resolution global environment model–model description and basic evaluation. J. Climate, 22, 18611896, doi:10.1175/2008JCLI2508.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St.Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and P. R. Gent, 2004: Anisotropic Gent–McWilliams parameterization for ocean models. J. Phys. Oceanogr., 34, 25412564, doi:10.1175/JPO2613.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. Maltrud, F. Bryan, and M. Hecht, 2000: Numerical simulation of the North Atlantic at 1/10°. J. Phys. Oceanogr., 30, 15321561, doi:10.1175/1520-0485(2000)030<1532:NSOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, H., 1971: On the representation of isentropic mixing in ocean models. J. Phys. Oceanogr., 1, 233234, doi:10.1175/1520-0485(1971)001<0233:OTROIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stacey, M. W., S. Pond, and Z. P. Nowak, 1995: A numerical model of the circulation in Knight Inlet, British Columbia, Canada. J. Phys. Oceanogr., 25, 10371062, doi:10.1175/1520-0485(1995)025<1037:ANMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sweeney, C., A. Gnanadesikan, S. M. Griffies, M. Harrison, A. Rosati, and B. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35, 11031119, doi:10.1175/JPO2740.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and J. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vecchi, G., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 7994–8016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Weese, S. R., and F. O. Bryan, 2006: Climate impacts of systematic errors in the simulation of the path of the North Atlantic Current. Geophys. Res. Lett., 33, L19708, doi:10.1029/2006GL027669.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A., A. Rosati, G. Lau, and J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C., P. Cessi, J. McClean, and M. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett.,33, L19708, doi:10.1029/2006GL027669.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the ocean. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Yokohata, T., and Coauthors, 2007: Different transient climate responses of two versions of an atmosphere-ocean coupled general circulation model. Geophys. Res. Lett.,34, L02707, doi:10.1029/2006GL027966.

  • Zhang, R., T. L. Delworth, A. Rosati, W. G. Anderson, K. W. Dixon, H.-C. Lee, and F. Zeng, 2011: Sensitivity of the North Atlantic Ocean circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. J. Geophys. Res.,116, C12024, doi:10.1029/2011JC007240.

  • Zika, J., and Coauthors, 2013: Vertical eddy fluxes in the southern ocean. J. Phys. Oceanogr., 43, 941955, doi:10.1175/JPO-D-12-0178.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8242 3002 263
PDF Downloads 3426 753 83