Improvement of ENSO Simulation Based on Intermodel Diversity

Yoo-Geun Ham Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju, South Korea

Search for other papers by Yoo-Geun Ham in
Current site
Google Scholar
PubMed
Close
and
Jong-Seong Kug School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

Search for other papers by Jong-Seong Kug in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupled global climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the close connection between the interannual variability and climatological states, the distinctive relation between the intermodel diversity of the interannual variability and that of the basic state is found. Based on this relation, the simulated interannual variabilities can be improved, by correcting their climatological bias. To test this methodology, the dominant intermodel difference in precipitation responses during El Niño–Southern Oscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominant intermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project (CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominant intermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatology than the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positive ENSO precipitation anomalies to the east (west). Based on the model’s systematic errors in atmospheric ENSO response and bias, the models with better climatological state tend to simulate more realistic atmospheric ENSO responses.

Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. After the statistical correction, simulating quality of the MME ENSO precipitation is distinctively improved. These results provide a possibility that the present methodology can be also applied to improving climate projection and seasonal climate prediction.

Corresponding author address: Prof. Jong-Seong Kug, School of Environmental Science and Engineering, POSTEC, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, South Korea. E-mail: jskug1@gmail.com

Abstract

In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupled global climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the close connection between the interannual variability and climatological states, the distinctive relation between the intermodel diversity of the interannual variability and that of the basic state is found. Based on this relation, the simulated interannual variabilities can be improved, by correcting their climatological bias. To test this methodology, the dominant intermodel difference in precipitation responses during El Niño–Southern Oscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominant intermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project (CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominant intermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatology than the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positive ENSO precipitation anomalies to the east (west). Based on the model’s systematic errors in atmospheric ENSO response and bias, the models with better climatological state tend to simulate more realistic atmospheric ENSO responses.

Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. After the statistical correction, simulating quality of the MME ENSO precipitation is distinctively improved. These results provide a possibility that the present methodology can be also applied to improving climate projection and seasonal climate prediction.

Corresponding author address: Prof. Jong-Seong Kug, School of Environmental Science and Engineering, POSTEC, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, South Korea. E-mail: jskug1@gmail.com
Save
  • AchutaRao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27, 115, doi:10.1007/s00382-006-0119-7.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, doi:10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., Y.-G. Ham, J.-S. Kug, A. Timmermann, J. Choi, and I.-S. Kang, 2010: The inverse effect of annual-mean state and annual-cycle changes on ENSO. J. Climate, 23, 10951110, doi:10.1175/2009JCLI2895.1.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and P. Liu, 2005: Response of the Asian summer monsoon to changes in El Niño properties. Quart. J. Roy. Meteor. Soc., 131, 805831, doi:10.1256/qj.04.08.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulation. J. Climate, 20, 10711092, doi:10.1175/JCLI4035.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bejarano, L., and F.-F. Jin, 2008: Coexistence of equatorial coupled modes of ENSO. J. Climate, 21, 30513067, doi:10.1175/2007JCLI1679.1.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., and Coauthors, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Boucharel, J., A. Timmermann, and F.-F. Jin, 2013: Zonal phase propagation of ENSO sea surface temperature anomalies: Revisited. Geophys. Res. Lett., 40, 40484053, doi:10.1002/grl.50685.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and A. Wittenberg, 2013: ENSO diversity in climate models. U.S. CLIVAR Variations, No. 2, U.S. CLIVAR, Washington, DC, 10–14.

  • Choi, J., S.-I. An, J.-S. Kug, and S.-W. Yeh, 2011: The role of mean state on changes in El Niño’s flavor. Climate Dyn., 37, 12051215, doi:10.1007/s00382-010-0912-1.

    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, and S.-W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn., 38, 26312644, doi:10.1007/s00382-011-1186-y.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chaing, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, doi:10.1038/ngeo1744.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1994: Why are surface equatorial ENSO winds anomalously westerly under anomalous large-scale convection? J. Climate, 7, 16231627, doi:10.1175/1520-0442(1994)007<1623:WASEEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Nino. J. Climate, 14, 30863101, doi:10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Coauthors, 1994: The simulated Indian monsoon: A GCM sensitivity study. J. Climate, 7, 3343, doi:10.1175/1520-0442(1994)007<0033:TSIMAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, doi:10.1175/2008BAMS2387.1.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39, 383398, doi:10.1007/s00382-011-1157-3.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2014: ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Climate Dyn., 43, 305318, doi:10.1007/s00382-014-2064-1.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, I.-S. Kang, F.-F. Jin, and A. Timmermann, 2010: Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM. Climate Dyn., 34, 905917, doi:10.1007/s00382-009-0586-8.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., I.-S. Kang, D. Kim, and J.-S. Kug, 2012: El Niño–Southern Oscillation simulated and predicted in SNU coupled GCMs. Climate Dyn., 38, 22272242, doi:10.1007/s00382-011-1171-5.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., M. Lim, and J.-S. Kug, 2013: Importance of mean state in simulating different types of El Niño revealed by SNU coupled GCMs. Prog. Oceanogr., 116, 130141, doi:10.1016/j.pocean.2013.07.005.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., S. Schubert, Y. Vikhliaev, and M. J. Suarez, 2014: An assessment of the skill of GEOS-5 seasonal forecasts. Climate Dyn., 43, 2415–2430, doi:10.1007/s00382-014-2063-2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26, 15931596, doi:10.1029/1999GL900316.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Jang, Y.-S., D. Kim, Y.-H. Kim, D.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2013: Simulation of two types of El Niño from different convective parameters. Asia-Pac. J. Atmos. Sci., 49, 193199, doi:10.1007/s13143-013-0020-3.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383395, doi:10.1007/s00382-002-0245-9.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, I.-S. Kang, F.-F. Jin, and A. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31, 213226, doi:10.1007/s00382-007-0348-4.

    • Search Google Scholar
    • Export Citation
  • Kim, D., Y.-S. Jang, D.-H. Kim, Y.-H. Kim, M. Watanabe, F.-F. Jin, and J. S. Kug, 2011a: El Niño–Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J. Geophys. Res., 116, D22112, doi:10.1029/2011JD016526.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011b: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, doi:10.1175/2011JCLI4177.1.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Kim, S.-T., W. Cai, F.-F. Jin, and J.-Y. Yu, 2013: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 3313–3321, doi:10.1007/s00382-013-1833-6.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15, 23012320, doi:10.1175/1520-0442(2002)015<2301:TCGCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble (NMME): Phase-1 seasonal to interannual prediction; phase-2 toward developing intra-seasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, doi:10.1175/JCLI3660.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., B. P. Kirtman, and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean in an interactive coupled model. J. Climate, 19, 63716381, doi:10.1175/JCLI3980.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., I.-S. Kang, and D.-H. Choi, 2008: Seasonal climate predictability with tier-one and tier-two prediction systems. Climate Dyn., 31, 403–416, doi:10.1007/s00382-007-0264-7.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL2.1 coupled GCM. J. Climate, 23, 12261239, doi:10.1175/2009JCLI3293.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, doi:10.1088/1748-9326/7/3/034002.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoon as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267283, doi:10.1007/s00382-010-0857-4.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Misra, V., and Coauthors, 2007: Validating and understanding the ENSO simulation in two coupled climate models. Tellus, 59A, 292308, doi:10.1111/j.1600-0870.2007.00231.x.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci.,5, 697–700, doi:10.1038/ngeo1568.

  • Santoso, A., S. McGregor, F.-F. Jin, W. Cai, M. H. England, S.-I. An, M. J. McPhaden, and E. Guilyardi, 2013: Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 504, 126130, doi:10.1038/nature12683.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., and J. M. Slingo, 2003: The simulation of peak and delayed ENSO teleconnections. J. Climate, 16, 17571774, doi:10.1175/1520-0442(2003)016<1757:TSOPAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9, 27272750, doi:10.1175/1520-0442(1996)009<2727:ITRVIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., P. M. Inness, and J. M. Slingo, 2005: The role of the basic state in the ENSO–monsoon relationship and implications for predictability. Quart. J. Roy. Meteor. Soc., 131, 781804, doi:10.1256/qj.04.70.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28, 3709–3712, doi:10.1029/2001GL012862.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562, doi:10.1175/2010JCLI3878.1.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y.-G. Ham, and J.-Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, doi:10.1175/JCLI-D-12-00304.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y.-G. Ham, and B. P. Kirtman, 2014a: A possible explanation on the changes in the spatial structure of ENSO from CMIP3 to CMIP5. Geophys. Res. Lett., 41, 140145, doi:10.1002/2013GL058478.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014b: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, doi:10.1007/s13143-014-0028-3.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and S. T. Kim, 2010: Three evolution patterns of central‐Pacific El Niño. Geophys. Res. Lett., 37, L08706, doi:10.1029/2010GL042810.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., and D.-Z. Sun, 2014: ENSO asymmetry in CMIP5 models. J. Climate, 27, 4070–4093, doi:10.1175/JCLI-D-13-00454.1.

  • Zhang, W., and F.-F. Jin, 2012: Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophys. Res. Lett., 39, L23704, doi:10.1029/2012GL053588.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1604 773 64
PDF Downloads 512 113 11