On the Interpretation of EOF Analysis of ENSO, Atmospheric Kelvin Waves, and the MJO

Paul E. Roundy University at Albany, State University of New York, Albany, New York

Search for other papers by Paul E. Roundy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Empirical orthogonal function (EOF) analysis is frequently applied to derive patterns and indexes used to identify and track weather and climate modes as expressed in state variables or proxies of convection. Individual EOFs or pairs of EOFs are often taken to be a complete description of the phenomenon they are intended to index. At the same time, in the absence of projection of the phenomenon onto multiple EOFs yielding multiple similar eigenvalues, each EOF is often assumed to represent a physically independent phenomenon. This project analyzed the leading EOFs of the earth’s skin temperature on the equator and outgoing longwave radiation (OLR) anomalies filtered for atmospheric equatorial Kelvin waves. Results show that the leading two EOFs of the skin temperature data—including east Pacific El Niño and El Niño Modoki—frequently evolve as a quadrature pair during El Niño events, even though the first EOF explains roughly 6 times as much variance as the second. They together diagnose the longitude of the SST anomaly maximum, and their linear combination frequently shows eastward or westward propagation. Analysis of the filtered OLR anomalies shows that the first six EOFs each represent Kelvin wave signals, with the first, second, and third pairs representing Kelvin waves characterized by zonal wavenumbers 2, 3, and 4, respectively. This result demonstrates that if a phenomenon occurs across a range of spatial scales, it is described by multiple EOFs at different scales. A similar analysis demonstrates that the Madden–Julian oscillation probably exhibits spread across a range of spatial scales that would also require multiple EOFs for full characterization.

Corresponding author address: Paul Roundy, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: proundy@albany.edu

Abstract

Empirical orthogonal function (EOF) analysis is frequently applied to derive patterns and indexes used to identify and track weather and climate modes as expressed in state variables or proxies of convection. Individual EOFs or pairs of EOFs are often taken to be a complete description of the phenomenon they are intended to index. At the same time, in the absence of projection of the phenomenon onto multiple EOFs yielding multiple similar eigenvalues, each EOF is often assumed to represent a physically independent phenomenon. This project analyzed the leading EOFs of the earth’s skin temperature on the equator and outgoing longwave radiation (OLR) anomalies filtered for atmospheric equatorial Kelvin waves. Results show that the leading two EOFs of the skin temperature data—including east Pacific El Niño and El Niño Modoki—frequently evolve as a quadrature pair during El Niño events, even though the first EOF explains roughly 6 times as much variance as the second. They together diagnose the longitude of the SST anomaly maximum, and their linear combination frequently shows eastward or westward propagation. Analysis of the filtered OLR anomalies shows that the first six EOFs each represent Kelvin wave signals, with the first, second, and third pairs representing Kelvin waves characterized by zonal wavenumbers 2, 3, and 4, respectively. This result demonstrates that if a phenomenon occurs across a range of spatial scales, it is described by multiple EOFs at different scales. A similar analysis demonstrates that the Madden–Julian oscillation probably exhibits spread across a range of spatial scales that would also require multiple EOFs for full characterization.

Corresponding author address: Paul Roundy, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: proundy@albany.edu
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Halldor, B., and S. A. Venegas, 1997: A manual for EOF and SVD analyses of climate data. McGill University, CCGCR Rep. 97-1, Montréal, Québec, Canada, 52 pp.

  • Hu, S., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41, 46544663, doi:10.1002/2014GL059573.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Jia, X., L. Chen, F. Ren, and C. Li, 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521–533, doi:10.1007/s00376-010-9118-z.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthat, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2001: EOF representations of the Madden–Julian oscillation and its connection with ENSO. J. Climate, 14, 30553061, doi:10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, doi:10.1175/MWR-D-13-00301.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liu, P., 2014: MJO structure associated with the higher-order CEOF modes. Climate Dyn., 43, 1939–1950, doi:10.1007/s00382-013-2017-0.

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasigeostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Meehl, G. A., A. Hu, and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780792, doi:10.1175/2008JCLI2552.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, doi:10.1175/2007JAS2345.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012a: Tracking and prediction of large-scale organized tropical convection by spectrally focused two-step space–time EOF analysis. Quart. J. Roy. Meteor. Soc., 138, 919931, doi:10.1002/qj.962.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012b: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 69, 20972106, doi:10.1175/JAS-D-12-03.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012c: The spectrum of convectively coupled Kelvin waves and the Madden–Julian oscillation in regions of low-level easterly and westerly background flow. J. Atmos. Sci., 69, 21072111, doi:10.1175/JAS-D-12-060.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2014: Regression analysis of zonally narrow components of the MJO. J. Atmos. Sci., 71,42534275, doi:10.1175/JAS-D-13-0288.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Wahl, E. R., and J. E. Smerdon, 2012: Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors. Geophys. Res. Lett., 39, L06703, doi:10.1029/2012GL051086.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season Real-Time Multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 100, Academic Press, 676 pp.

  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5102 1520 141
PDF Downloads 3792 751 89