Impact of Subdaily Air–Sea Interaction on Simulating Intraseasonal Oscillations over the Tropical Asian Monsoon Region

Wenting Hu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wenting Hu in
Current site
Google Scholar
PubMed
Close
,
Anmin Duan State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Anmin Duan in
Current site
Google Scholar
PubMed
Close
, and
Guoxiong Wu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Guoxiong Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The off-equatorial boreal summer intraseasonal oscillation (ISO) is closely linked to the onset, active, and break phases of the tropical Asian monsoon, but the accurate simulation of the eastward-propagating low-frequency ISO by current models remains a challenge. In this study, an atmospheric general circulation model (AGCM)–ocean mixed layer coupled model with high (10 min) coupling frequency (DC_10m) shows improved skill in simulating the ISO signal in terms of period, intensity, and propagation direction, compared with the coupled runs with low (1 and 12 h) coupling frequency and a stand-alone AGCM driven by the daily sea surface temperature (SST) fields. In particular, only the DC_10m is able to recreate the observed lead–lag phase relationship between SST (SST tendency) and precipitation at intraseasonal time scales, indicating that the ISO signal is closely linked to the subdaily air–sea interaction. During the ISO life cycle, air–sea interaction reduces the SST underlying the convection via wind–evaporation and cloud–radiation feedbacks, as well as wind-induced oceanic mixing, which in turn restrains convection. However, to the east of the convection, the heat-induced atmospheric Gill-type response leads to downward motion and a reduced surface westerly background flow because of the easterly anomalies. The resultant decreased oceanic mixing, together with the increased shortwave flux, tends to warm the SST and subsequently trigger convection. Therefore, the eastward-propagating ISO may result from an asymmetric east–west change in SST induced mainly by multiscale air–sea interactions.

Corresponding author address: Dr. Anmin Duan, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: amduan@lasg.iap.ac.cn

Abstract

The off-equatorial boreal summer intraseasonal oscillation (ISO) is closely linked to the onset, active, and break phases of the tropical Asian monsoon, but the accurate simulation of the eastward-propagating low-frequency ISO by current models remains a challenge. In this study, an atmospheric general circulation model (AGCM)–ocean mixed layer coupled model with high (10 min) coupling frequency (DC_10m) shows improved skill in simulating the ISO signal in terms of period, intensity, and propagation direction, compared with the coupled runs with low (1 and 12 h) coupling frequency and a stand-alone AGCM driven by the daily sea surface temperature (SST) fields. In particular, only the DC_10m is able to recreate the observed lead–lag phase relationship between SST (SST tendency) and precipitation at intraseasonal time scales, indicating that the ISO signal is closely linked to the subdaily air–sea interaction. During the ISO life cycle, air–sea interaction reduces the SST underlying the convection via wind–evaporation and cloud–radiation feedbacks, as well as wind-induced oceanic mixing, which in turn restrains convection. However, to the east of the convection, the heat-induced atmospheric Gill-type response leads to downward motion and a reduced surface westerly background flow because of the easterly anomalies. The resultant decreased oceanic mixing, together with the increased shortwave flux, tends to warm the SST and subsequently trigger convection. Therefore, the eastward-propagating ISO may result from an asymmetric east–west change in SST induced mainly by multiscale air–sea interactions.

Corresponding author address: Dr. Anmin Duan, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: amduan@lasg.iap.ac.cn
Save
  • Agudelo, P. A., J. A. Curry, C. D. Hoyos, and P. J. Webster, 2006: Transition between suppressed and active phases of intraseasonal oscillations in the Indo-Pacific warm pool. J. Climate, 19, 55195530, doi:10.1175/JCLI3924.1.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Bernie, D. J., S. J. Woolnough, and J. M. Slingo, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202, doi:10.1175/JCLI3319.1.

    • Search Google Scholar
    • Export Citation
  • Bernie, D. J., E. Guilyardi, G. Madec, J. M. Slingo, and S. J. Woolnough, 2007: Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 1: Adiurnally forced GCM. Climate Dyn., 29, 575590, doi:10.1007/s00382-007-0249-6.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and Coauthors, 2001: BOBMEX: The Bay of Bengal Monsoon Experiment. Bull. Amer. Meteor. Soc., 82, 22172243, doi:10.1175/1520-0477(2001)082<2217:BTBOBM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brinkop, S., and E. Roeckner, 1995: Sensitivity of a general-circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary-layer. Tellus, 47A, 197220, doi:10.1034/j.1600-0870.1995.t01-1-00004.x.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., W. Ai, and J. Xu, 2002: Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon. J. Meteor. Soc. Japan, 80, 11031113, doi:10.2151/jmsj.80.1103.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Duan, A., C. Sui, and G. Wu, 2008: Simulation of local air-sea interaction in the great warm pool and its influence on Asian monsoon. J. Geophys. Res., 113, D22105, doi:10.1029/2008JD010520.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: A studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689720, doi:10.1002/qj.49712253107.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17, 12631271, doi:10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157174, doi:10.1175/JAS3830.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Space–time spectral analysis and its application to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171.

  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092924, doi:10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, W. T., A. M. Duan, and G. X. Wu, 2011: Sensitivity of simulated tropical intraseasonal oscillations to cumulus schemes. Sci. China Earth Sci., 54, 17611771, doi:10.1007/s11430-011-4215-0.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382, doi:10.1175/1520-0442(2003)016<0365:SOTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. A., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., and T. P. Sabin, 2008: An ocean–atmosphere interaction mechanism for the active break cycle of the Asian summer monsoon. Climate Dyn., 30, 553566, doi:10.1007/s00382-007-0305-2.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., and I.-S. Kang, 2008: The impact of ocean–atmosphere coupling on the predictability of boreal summer intraseasonal oscillation. Climate Dyn., 31, 859870, doi:10.1007/s00382-008-0409-3.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., C. D. Hoyos, P. J. Webster, and I.-S. Kang, 2008: Sensitivity of MJO simulation and predictability to sea surface temperature variability. J. Climate, 21, 53045317, doi:10.1175/2008JCLI2078.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., C. D. Hoyos, P. J. Webster, and I.-S. Kang, 2010: Ocean–atmosphere coupling and the boreal winter MJO. Climate Dyn., 35, 771784, doi:10.1007/s00382-009-0612-x.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., P. M. Inness, H. Weller, and J. M. Slingo, 2008: The importance of high-frequency sea surface temperature variability to the intraseasonal oscillation of Indian monsoon rainfall. J. Climate, 21, 61196140, doi:10.1175/2008JCLI2329.1.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., S. J. Woolnough, H. Weller, and J. M. Slingo, 2011: The impact of finer-resolution air–sea coupling on the intraseasonal oscillation of the Indian monsoon. J. Climate, 24, 24512468, doi:10.1175/2010JCLI3868.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., K. M. Weickmann, G. N. Kiladis, B. E. Mapes, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M.-I. Lee, 2008: Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J. Climate, 21, 45414567, doi:10.1175/2008JCLI1816.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and G. X. Wu, 1997: Impacts of land surface on climate of July and onset of summer monsoon: A study with an AGCM plus SSiB. Adv. Atmos. Sci., 15, 410423.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, doi:10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mao, J. Y., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 23882402, doi:10.1175/JCLI3395.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay, P., S. Taraphdar, B. N. Goswami, and K. Krishnakumar, 2010: Indian summer monsoon precipitation climatology in a high-resolution regional climate model: Impacts of convective parameterization on systematic biases. Wea. Forecasting, 25, 369387, doi:10.1175/2009WAF2222320.1.

    • Search Google Scholar
    • Export Citation
  • Myers, D. S., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950, doi:10.1175/1520-0442(2003)016<0929:TDWVAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near surface process. J. Geophys. Res., 104, 15 62115 634, doi:10.1029/1999JC900068.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., C. J. Jang, T. Yamagata, P. C. Chu, and C. H. Kim, 2002: Simulation of more realistic upper-ocean processes from an OGCM with a new ocean mixed layer model. J. Phys. Oceanogr., 32, 12841307, doi:10.1175/1520-0485(2002)032<1284:SOMRUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039, doi:10.1002/qj.49711247406.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., and A. Kitoh, 2006: Modulation of tropical intraseasonal oscillations by atmosphere–ocean coupling. J. Climate, 19, 366391, doi:10.1175/JCLI3638.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, X. L., and G. J. Zhang, 2009: Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. J. Climate, 22, 42994315, doi:10.1175/2009JCLI2642.1.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and T. Yasunari, 2006: Workshop on monsoon climate systems: Toward better prediction of the monsoon. Bull. Amer. Meteor. Soc., 87, 13991403, doi:10.1175/BAMS-87-10-1399.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., X. Li, K.-M. Lau, and D. Adamec, 1997: Multiscale air–sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448462, doi:10.1175/1520-0493(1997)125<0448:MASIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., C. P. Neema, S. Mathew, and R. Remya, 2012: Mechanisms of summer intraseasonal sea surface temperature oscillations in the Bay of Bengal. J. Geophys. Res., 117, C01005, doi:10.1029/2011JC007433.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J. H. Kim, 1999: The influence of coupled sea surface temperature on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358, doi:10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., W. Wang, X. Fu, and K.-H. Seo, 2012: Tropical intraseasonal rainfall variability in the CFSR. Climate Dyn., 38, 21912207, doi:10.1007/s00382-011-1087-0.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2009: Impacts of ocean surface on the northward propagation of the boreal summer intraseasonal oscillation in the NCEP Climate Forecast System. J. Climate, 22, 65616576, doi:10.1175/2009JCLI3007.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40, 21102124, doi:10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83, 16031630, doi:10.1175/BAMS-83-11-1603.

  • Woolnough, S. J., F. Vitart, and M. A. Balmaseda, 2007: The role of the ocean in the Madden–Julian oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128, doi:10.1002/qj.4.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and J. L. Kinter, 2010: Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and east-west contrast. J. Geophys. Res., 115, D06101, doi:10.1029/2009JD012579.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. J. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of the 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 59, 336354.

    • Search Google Scholar
    • Export Citation
  • Yim, B. Y., S. W. Yeh, Y. Noh, B. K. Moon, and Y. G. Park, 2008: Sea surface salinity variability and its relation to El Niño in a CGCM. Asia-Pac. J. Atmos. Sci., 44, 173189.

    • Search Google Scholar
    • Export Citation
  • Zeng, Q. C., 1963: Characteristic parameter and dynamical equation of atmospheric motions (in Chinese). Acta Meteor. Sin., 33, 472483.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18, 40464064, doi:10.1175/JCLI3508.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 902 604 31
PDF Downloads 251 38 0