Continuum Power CCA: A Unified Approach for Isolating Coupled Modes

Erik Swenson Asia–Pacific Economic Cooperation Climate Center, Busan, South Korea

Search for other papers by Erik Swenson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Various multivariate statistical methods exist for analyzing covariance and isolating linear relationships between datasets. The most popular linear methods are based on singular value decomposition (SVD) and include canonical correlation analysis (CCA), maximum covariance analysis (MCA), and redundancy analysis (RDA). In this study, continuum power CCA (CPCCA) is introduced as one extension of continuum power regression for isolating pairs of coupled patterns whose temporal variation maximizes the squared covariance between partially whitened variables. Similar to the whitening transformation, the partial whitening transformation acts to decorrelate individual variables but only to a partial degree with the added benefit of preconditioning sample covariance matrices prior to inversion, providing a more accurate estimate of the population covariance. CPCCA is a unified approach in the sense that the full range of solutions bridges CCA, MCA, RDA, and principal component regression (PCR). Recommended CPCCA solutions include a regularization for CCA, a variance bias correction for MCA, and a regularization for RDA. Applied to synthetic data samples, such solutions yield relatively higher skill in isolating known coupled modes embedded in noise. Provided with some crude prior expectation of the signal-to-noise ratio, the use of asymmetric CPCCA solutions may be justifiable and beneficial. An objective parameter choice is offered for regularization with CPCCA based on the covariance estimate of O. Ledoit and M. Wolf, and the results are quite robust. CPCCA is encouraged for a range of applications.

Current affiliation: George Mason University, MSN 6C5, 440 University Drive, Fairfax, VA 22030. E-mail: eswenso1@gmu.edu

Corresponding author address: Erik Swenson, APEC Climate Center, 12, Centum 7-ro, Haeundae-gu, Busan 612-020, South Korea. E-mail: swenson@cola.iges.org

Abstract

Various multivariate statistical methods exist for analyzing covariance and isolating linear relationships between datasets. The most popular linear methods are based on singular value decomposition (SVD) and include canonical correlation analysis (CCA), maximum covariance analysis (MCA), and redundancy analysis (RDA). In this study, continuum power CCA (CPCCA) is introduced as one extension of continuum power regression for isolating pairs of coupled patterns whose temporal variation maximizes the squared covariance between partially whitened variables. Similar to the whitening transformation, the partial whitening transformation acts to decorrelate individual variables but only to a partial degree with the added benefit of preconditioning sample covariance matrices prior to inversion, providing a more accurate estimate of the population covariance. CPCCA is a unified approach in the sense that the full range of solutions bridges CCA, MCA, RDA, and principal component regression (PCR). Recommended CPCCA solutions include a regularization for CCA, a variance bias correction for MCA, and a regularization for RDA. Applied to synthetic data samples, such solutions yield relatively higher skill in isolating known coupled modes embedded in noise. Provided with some crude prior expectation of the signal-to-noise ratio, the use of asymmetric CPCCA solutions may be justifiable and beneficial. An objective parameter choice is offered for regularization with CPCCA based on the covariance estimate of O. Ledoit and M. Wolf, and the results are quite robust. CPCCA is encouraged for a range of applications.

Current affiliation: George Mason University, MSN 6C5, 440 University Drive, Fairfax, VA 22030. E-mail: eswenso1@gmu.edu

Corresponding author address: Erik Swenson, APEC Climate Center, 12, Centum 7-ro, Haeundae-gu, Busan 612-020, South Korea. E-mail: swenson@cola.iges.org
Save
  • Akaho, S., 2001: A kernel method for canonical correlation analysis. Proc. Int. Meeting of the Psychometric Society (IMPS-2001), Osaka, Japan, Psychometric Society, 7 pp.

  • Bakalian, F., H. Ritchie, K. Thompson, and W. Merryfield, 2010: Exploring atmosphere–ocean coupling using principal component and redundancy analysis. J. Climate, 23, 4926–4943, doi:10.1175/2010JCLI3388.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and R. Preisendorfer, 1987: Origins of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 1825–1850, doi:10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and T. M. Smith, 1996: Specification and prediction of global surface temperature and precipitation from global SST using CCA. J. Climate, 9, 2660–2697, doi:10.1175/1520-0442(1996)009<2660:SAPOGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541–560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cherry, S., 1996: Singular value decomposition analysis and canonical correlation analysis. J. Climate, 9, 2003–2009, doi:10.1175/1520-0442(1996)009<2003:SVDAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cruz-Cano, R., and M.-L. T. Lee, 2014: Fast regularized canonical correlation analysis. Comput. Stat. Data Anal., 70, 88–100, doi:10.1016/j.csda.2013.09.020.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606–623, doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Jong, S., and H. A. L. Kiers, 1992: Principal covariates regression: Part I. Theory. Chemom. Intell. Lab. Syst., 14, 155–164, doi:10.1016/0169-7439(92)80100-I.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and P. Chang, 2003: Predictable component analysis, canonical correlation analysis, and autoregressive models. J. Atmos. Sci., 60, 409–416, doi:10.1175/1520-0469(2003)060<0409:PCACCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and J. Shukla, 2006: Specification of wintertime North American surface temperature. J. Climate, 19, 2691–2716, doi:10.1175/JCLI3704.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2007: Predictability: Recent insights from information theory. Rev. Geophys., 45, RG4002, doi:10.1029/2006RG000202.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. D., A. Agrinsoni, and J. Hannemann, 2007: Audio signal delay estimation using partial whitening. Proc. SoutheastCon, Richmond, VA, IEEE, 267–281.

  • Fischer, M. J., 2014: Regularized principal covariates regression and its application to finding coupled patterns in climate fields. J. Geophys. Res. Atmos., 119, 1266–1276, doi:10.1002/2013JD020382.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592–606, doi:10.1175/JCLI4021.1.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., A. Buja, and R. Tibshirani, 1995: Penalized discriminant analysis. Ann. Stat., 23, 73–102, doi:10.1214/aos/1176324456.

    • Search Google Scholar
    • Export Citation
  • Hotelling, H., 1936: Relations between two sets of variates. Biometrika, 28, 321–377, doi:10.1093/biomet/28.3-4.321.

  • Ledoit, O., and M. Wolf, 2004: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal., 88, 365–411, doi:10.1016/S0047-259X(03)00096-4.

    • Search Google Scholar
    • Export Citation
  • Lim, Y., S. Jo, J. Lee, H.-S. Oh, and H.-S. Kang, 2011: An improvement of seasonal climate prediction by regularized canonical correlation analysis. Int. J. Climatol., 32, 1503–1512, doi:10.1002/joc.2368.

    • Search Google Scholar
    • Export Citation
  • Lorber, A., L. E. Wangen, and B. R. Kowalski, 1987: A theoretical foundation for the PLS algorithm. J. Chemom., 1, 19–31, doi:10.1002/cem.1180010105.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., and J. Tribbia, 2005: The coupled manifold. J. Atmos. Sci., 62, 310–330, doi:10.1175/JAS-3345.1.

  • Navarra, A., and V. Simoncini, 2010: A Guide to Empirical Orthogonal Functions for Climate Data Analysis. Springer, 206 pp.

  • Newman, M., and P. D. Sardeshmukh, 1995: A caveat concerning singular value decomposition. J. Climate, 8, 352–360, doi:10.1175/1520-0442(1995)008<0352:ACCSVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ribes, A., J.-M. Azaïs, and S. Planton, 2009: Adaptation of the optimal fingerprint method for climate change detection using a well-conditioned covariance matrix estimate. Climate Dyn., 33, 707–722, doi:10.1007/s00382-009-0561-4.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2001: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Climate, 14, 853–871, doi:10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, D. Chang, and M. N. Evans, 2010: A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium. J. Climate, 23, 4856–4880, doi:10.1175/2010JCLI3328.1.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., J. M. Wallace, M. T. Stoelinga, and T. P. Mitchell, 2010: Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys. Res. Lett., 37, L03801, doi:10.1029/2009GL041478.

    • Search Google Scholar
    • Export Citation
  • Stone, M., and R. J. Brooks, 1990: Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. J. Roy. Stat. Soc., 52, 237–269.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., P. F. Craigmile, M. Haran, B. Li, E. Mannshardt, and B. Rajaratnam, 2012: Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev., 35, 1–22, doi:10.1016/j.quascirev.2012.01.012.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., T. DelSole, S. J. Mason, and A. G. Barnston, 2008: Regression-based methods for finding coupled patterns. J. Climate, 21, 4384–4398, doi:10.1175/2008JCLI2150.1.

    • Search Google Scholar
    • Export Citation
  • Tung, Y. L., C.-Y. Tam, S.-J. Sohn, and J.-L. Chu, 2013: Improving the seasonal forecast for summertime South China rainfall using statistical downscaling. J. Geophys. Res. Atmos., 118, 5147–5159, doi:10.1002/jgrd.50367.

    • Search Google Scholar
    • Export Citation
  • Vinod, H. D., 1976: Canonical ridge and econometrics of joint production. J. Econom., 4, 147–166, doi:10.1016/0304-4076(76)90010-5.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561–576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Principal component (EOF) analysis. Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 519–562.

  • Wold, H., 1966: Estimation of principal components and related models by iterative least squares. Multivariate Analysis, P. R. Krishnaiah, Ed., Academic Press, 391–420.

  • Wu, Q., 2010: Forcing of tropical SST anomalies by wintertime AO-like variability. J. Climate, 23, 2465–2472, doi:10.1175/2009JCLI2749.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 596 323 16
PDF Downloads 184 66 3