• Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Bain, C. L., K. D. Williams, S. F. Milton, and J. T. Heming, 2014: Objective tracking of African easterly waves at the Met Office models. Quart. J. Roy. Meteor. Soc., 140, 4757, doi:10.1002/qj.2110.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A,539561, doi:10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, doi:10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and S. E. Zebiak, 2002: Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Wea. Forecasting, 17, 11521162, doi:10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A, 589604, doi:10.1111/j.1600-0870.2005.00117.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, doi:10.1175/JCLI4203.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05, doi:10.1029/2007GC001861.

    • Search Google Scholar
    • Export Citation
  • Caron, L. P., C. Jones, and K. Winger, 2011: Impact of resolution and downscaling technique in simulating recent tropical cyclone activity. Climate Dyn., 37, 869892, doi:10.1007/s00382-010-0846-7.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893, doi:10.1175/2009JCLI2880.1.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., J. F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27, 377399, doi:10.1007/s00382-006-0135-7.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., and T. E. LaRow, 2000: Seasonal predictions using a regional spectral model embedded within a coupled ocean–atmosphere model. Mon. Wea. Rev., 128, 689708, doi:10.1175/1520-0493(2000)128<0689:SPUARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colbert, J. A., B. J. Soden, G. A. Vecchi, and B. P. Kirtman, 2013: The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Climate, 26, 40884095, doi:10.1175/JCLI-D-12-00342.1.

    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., F. Chauvin, K. Walsh, S. Lavender, D. Abbs, and F. Roux, 2012: The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region. Climate Dyn., 39, 15591576, doi:10.1007/s00382-012-1290-7.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, doi:10.1038/nature07234.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, doi:10.1175/JCLI3908.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2013: Downscaling CMIP5 climate models show increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., K. Oouchi, M. Satoh, H. Tomita, and Y. Yamada, 2010: Comparison of explicitly simulated and downscaled tropical cyclone activity in a high-resolution global climate model. J. Adv. Model Earth Syst.,2, doi:10.3894/JAMES.2010.2.9.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 1999: Climate simulations of African easterly waves. J. Climate, 12, 17471769, doi:10.1175/1520-0442(1999)012<1747:CSOAEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, doi:10.1007/s00382-007-0235-z.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: A global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228, doi:10.1175/2008JCLI1921.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, doi:10.1175/JCLI-D-11-00050.1.

    • Search Google Scholar
    • Export Citation
  • Hodanish, S. J., and W. Gray, 1993: An observational analysis of tropical cyclone recurvature. Mon. Wea. Rev., 121, 26652689, doi:10.1175/1520-0493(1993)121<2665:AOAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constrains for feature tracking, Mon. Wea. Rev., 127, 1362–1373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

  • Horn, M., K. Walsh, and A. Ballinger, 2013: Detection of tropical cyclones using a phenomenon-based cyclone tracking scheme. Proc. U.S. CLIVAR Hurricane Workshop, Princeton, NJ, Geophysical Fluid Dynamics Laboratory, 27 pp. [Available online at http://www.usclivar.org/sites/default/files/meetings/Walsh_clivar_gfdl_2013.pdf.]

  • Horn, M., and Coauthors, 2014: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Climate,27, 9197–9213, doi:10.1175/JCLI-D-14-00200.1.

  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC-22, 21 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, doi:10.1175/BAMS-88-10-1549.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci.,2, 157–163, doi:10.1038/ngeo779.

  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of the duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, doi:10.1175/2009JCLI3034.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., Y. K. Lim, D. W. Shin, E. Chassignet, and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 31913206, doi:10.1175/2007JCLI2036.1.

    • Search Google Scholar
    • Export Citation
  • Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke, 2012: Physically based assessment of hurricane surge threat under climate change. Nat. Climate Change, 2, 462467, doi:10.1038/nclimate1389.

    • Search Google Scholar
    • Export Citation
  • Manganello, J., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, doi:10.1175/JCLI-D-11-00346.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., G. D. Deane, L. F. Bosart, C. A. Davies, and T. J. Galarneau, 2008: Climatology of the tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304, doi:10.1175/2007MWR2245.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, and M. Zhao, 2014: Variability of tropical cyclone track density in the North Atlantic: Observations and high-resolution simulations. J. Climate, 27, 47974814, doi:10.1175/JCLI-D-13-00587.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, doi:10.1175/2010JCLI3338.1.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global warming climate as simulated in a 20 km mesh global atmospheric model: Frequency and intensity analysis. J. Meteor. Soc. Japan, 84, 259276, doi:10.2151/jmsj.84.259.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2014: The impact of El Niño–Southern Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J. Climate, 27, 53115328, doi:10.1175/JCLI-D-13-00687.1.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., S. J. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Climate Dyn., 39, 897917, doi:10.1007/s00382-011-1225-8.

    • Search Google Scholar
    • Export Citation
  • Rao, B. V. B., D. Hari Prasad, D. Srinivas, and Y. Anjaneyulu, 2010: Role of vertical resolution in numerical models towards the intensification, structure and track of tropical cyclones. Mar. Geod., 33, 338–355, doi:10.1080/01490419.2010.518066.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011a: Impact of physical parametrization on idealized tropical cyclones in the Community Atmosphere Model. Geophys. Res. Lett., 38, L048045, doi:10.1029/2010GL046297.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011b: Assessing the uncertainty of tropical cyclone simulations in NCAR's Community Atmosphere Model. J. Adv. Model. Earth Syst., 3, M08002, doi:10.1029/2011MS000076.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, doi:10.1029/2011MS000099.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Global Modeling and Data Assimilation Tech. Rep. NASA/TM-2008-104606, Vol. 27, 118 pp.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. MPI Rep. 349, 127 pp.

  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and C. L. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788, doi:10.1175/2009BAMS2884.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1983: Transformed Eliassen-balanced vortex model. J. Atmos. Sci., 40, 15711583, doi:10.1175/1520-0469(1983)040<1571:TEBVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, G. Villarini, G. A. Vecchi, M. Zhao, K. Walsh, and A. Navarra, 2014: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Climate, 27, 4642–4654, doi:10.1175/JCLI-D-14-00065.1.

    • Search Google Scholar
    • Export Citation
  • Shaevitz, D. A., and Coauthors, 2015: Characteristics of tropical cyclones in high-resolution models of the present climate. J. Adv. Model. Earth Syst., doi:10.1002/2014MS000372, in press.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 123 pp.

  • Stocker, T. F., and Coauthors, Eds., 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152, doi:10.1175/JCLI-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Strazzo, S., J. B. Elsner, T. LaRow, D. Halperin, and M. Zhao, 2013: Observed versus GCM-generated local tropical cyclone frequency: Comparisons using a spatial lattice. J. Climate, 26, 82578268, doi:10.1175/JCLI-D-12-00808.1.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272, doi:10.2151/jmsj.80.249.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, doi:10.1175/JCLI-D-12-00441.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. Vecchi, and T. Knutson, 2014: Sensitivity of tropical cyclone rainfall to idealized global scale forcings. J. Climate, 27, 4622–4641, doi:10.1175/JCLI-D-13-00780.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., D. Anderson, and T. Stockdale, 2003: Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate, 16, 39323945, doi:10.1175/1520-0442(2003)016<3932:SFOTCL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Wea. Rev., 125, 17671779, doi:10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., S. Lavender, H. Murakami, E. Scoccimarro, L.-P. Caron, and M. Ghantous, 2010: The Tropical Cyclone Climate Model Intercomparison Project. Hurricanes and Climate Change, Vol. 2, J. B. Elsner et al., Eds., Springer, 1–24.

  • Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013: Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dyn., 40, 585599, doi:10.1007/s00382-012-1298-z.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., and Coauthors, 2015. Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00242.1, in press.

  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919941, doi:10.5194/gmd-4-919-2011.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2014: How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J. Climate, 27, 56735692, doi:10.1175/JCLI-D-13-00625.1.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2015: The effect of horizontal resolution on AMIP simulation quality in the Community Atmospheric Model, CAM5.1. J. Model. Earth Syst., doi:10.1002/2013MS000276, in press.

  • Yoshimura, J., and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution AGCM—Impacts of SST warming and CO2 increase. SOLA, 1, 133136, doi:10.2151/sola.2005-035.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428, doi:10.2151/jmsj.84.405.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst.,6, 805–828, doi:10.1002/2014MS000352.

  • Zhang, D. L., and H. Wang, 2003: Dependence of hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci.,20, 711–725, doi:10.1007/BF02915397.

  • Zhao, M., and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, doi:10.1175/2010JCLI3837.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Climate, 25, 29953009, doi:10.1175/JCLI-D-11-00313.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283, doi:10.1175/JAS-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2013: Robust direct effect of increasing atmospheric CO2 concentration on global tropical cyclone frequency: A multi-model inter-comparison. U.S. CLIVAR Variations, Vol. 11, No. 3, U.S. Climate Variability and Predictability Program, Washington, D.C., 1723.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 29
PDF Downloads 16 16 16

Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks

View More View Less
  • 1 Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 3 NOAA/National Climatic Data Center, Asheville, North Carolina
  • | 4 Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 5 School of Earth, University of Melbourne, Melbourne, Victoria, Australia
  • | 6 Center for Climate Systems, Columbia University, New York, New York, and Global Modeling and Assimilation Office, and Goddard Earth Sciences Technology and Research/I.M. Systems Group, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 7 Florida State University, Tallahassee, Florida
  • | 8 Global Modeling and Assimilation Office, and Goddard Earth Sciences Technology and Research/I.M. Systems Group, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 9 Texas A&M University, College Station, Texas
  • | 10 Met Office Hadley Centre, Devon, United Kingdom
  • | 11 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, and Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce, Italy
  • | 12 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 13 National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 14 NOAA/NWS/NCEP/Climate Prediction Center, College Park, and Innovim, LLC, Greenbelt, Maryland
  • | 15 Lawrence Berkeley National Laboratory, and University of California, Berkeley, Berkeley, California
  • | 16 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Restricted access

Abstract

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.

Corresponding author address: Anne Sophie Daloz, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 West Dayton Street, 11th floor, Madison, WI 53704. E-mail: adaloz@wisc.edu

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Abstract

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.

Corresponding author address: Anne Sophie Daloz, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 West Dayton Street, 11th floor, Madison, WI 53704. E-mail: adaloz@wisc.edu

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Save