• Abdi, H., 2010: Partial least squares regression and projection on latent structure regression (PLS regression). WIREs Comput. Stat., 2, 97106, doi:10.1002/wics.51.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., R. Tomas, C. Deser, and D. M. Lawrence, 2010: The atmospheric response to projected terrestrial snow changes in the late twenty-first century. J. Climate, 23, 64306437, doi:10.1175/2010JCLI3899.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 18251850, doi:10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 1999: Detection and attribution of recent climate change: A status report. Bull. Amer. Meteor. Soc., 80, 26312660, doi:10.1175/1520-0477(1999)080<2631:DAAORC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., R. A. Madden, J. M. Wallace, and D. S. Gutzler, 1979: Geographical variations in the vertical structure of geopotential height fluctuations. J. Atmos. Sci., 36, 24502466, doi:10.1175/1520-0469(1979)036<2450:GVITVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., H. F. Diaz, P. D. Jones, and P. M. Kelly, 1987: Secular fluctuations in temperature over the Northern Hemisphere land areas and mainland China since the mid-19th century. The Climate of China and Global Climate, D. Yeh et al., Eds., China Press and Springer Verlag, 77–87.

  • Braganza, K., D. J. Karoly, A. C. Hirst, M. E. Mann, P. A. Stott, R. J. Stouffer, and S. F. B. Tett, 2003: Simple indices of global climate variability and change: Part I—Variability and correlation structure. Climate Dyn., 20, 491502, doi:10.1007/s00382-002-0286-0 .

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., N.-C. Lau, and M. J. Nath, 1998: The cold ocean-warm land pattern: Model simulation and relevance to climate change detection. J. Climate, 11, 27432763, doi:10.1175/1520-0442(1998)011<2743:TCOWLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, doi:10.1175/2009JCLI2735.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, 044022, doi:10.1088/1748-9326/6/4/044022.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., N. P. Gillett, and D. W. J. Thompson, 2010: Comparing variability and trends in observed and modelled global-mean surface temperature. Geophys. Res. Lett., 37, L16802, doi:10.1029/2010GL044255.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, G. C. Hegerl, M. R. Allen, and P. A. Stott, 2002: Detecting anthropogenic influence with a multi-model ensemble. Geophys. Res. Lett., 29, 1970, doi:10.1029/2002GL015836.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and F. W. Zwiers, 2011: Use of models in detection and attribution of climate change. Wiley Interdiscip. Rev.: Climate Change, 2, 570591, doi:10.1002/wcc.121.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665668, doi:10.1029/96GL00459.

    • Search Google Scholar
    • Export Citation
  • Jain, S., U. Lall, and M. E. Mann, 1999: Seasonality and interannual variations of Northern Hemisphere temperature: Equator-to-pole gradient and ocean–land contrast. J. Climate, 12, 10861100, doi:10.1175/1520-0442(1999)012<1086:SAIVON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, doi:10.1007/s00382-007-0306-1.

    • Search Google Scholar
    • Export Citation
  • Kalela-Brundin, M., 1999: Climatic information from tree-rings of Pinus sylvestris L. and a reconstruction of summer temperatures back to AD 1500 in Femundsmarka, eastern Norway, using partial least squares regression (PLS) analysis. Holocene, 9, 5977, doi:10.1191/095968399678118795.

    • Search Google Scholar
    • Export Citation
  • Klein, W. H., 1962: Objective specification of monthly mean surface temperatures from 700-mb heights. J. Appl. Meteor., 1, 154156, doi:10.1175/1520-0450(1962)001<0154:SOMMST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, W. H., 1983: Objective specification of monthly mean surface temperature from mean 700 mb heights in winter. Mon. Wea. Rev., 111, 674691, doi:10.1175/1520-0493(1983)111<0674:OSOMMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, W. H., and J. E. Walsh, 1983: A comparison of pointwise screening and empirical orthogonal functions in specifying monthly surface temperature from 700 mb data. Mon. Wea. Rev., 111, 669673, doi:10.1175/1520-0493(1983)111<0669:ACOPSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean temperatures during winter. J. Meteor., 16, 672682, doi:10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res., 116, D19121, doi:10.1029/2011JD016187.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with implications on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P., A. Ash, and M. Smith, 2005: From oceans to farms: The value of a novel statistical climate forecast for agricultural management. J. Climate, 18, 42874302, doi:10.1175/JCLI3515.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007a: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007b: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67, 375383.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosava, 2006: Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19, 57965815, doi:10.1175/JCLI3951.1.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17, 37283744, doi:10.1175/1520-0442(2004)017<3728:ASLFFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quinn, W. H., and V. T. Neal, 1984: Recent climate change and the 1982–83 E1 Niño. Proc. Eighth Annual Climate Diagnostic Workshop, Downsville, ON, Canada, NOAA, 148154.

  • Santer, B. D., K. E. Taylor, T. M. L. Wigley, J. E. Penner, P. D. Jones, and U. Cubasch, 1995: Towards the detection and attribution of an anthropogenic effect on climate. Climate Dyn., 12, 77100, doi:10.1007/BF00223722.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28 03328 059, doi:10.1029/2000JD000189.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., 2009: A Eurasian pattern of Northern Hemisphere wintertime sea-level pressure variability. M.S. thesis, University of Washington, 116 pp.

  • Smoliak, B. V., 2013: Detection and attribution of global surface air temperature change in the instrumental record. Ph.D. thesis, University of Washington, 190 pp.

  • Smoliak, B. V., J. M. Wallace, M. T. Stoelinga, and T. P. Mitchell, 2010: Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys. Res. Lett., 37, L03801, doi:10.1029/2009GL041478.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206140, doi:10.1175/2009JCLI3089.1.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., E. A. O’Lenic, and W. H. Klein, 1993: Consistency check for trends in surface temperature and upper-level circulation: 1950–1992. J. Climate, 6, 22882297, doi:10.1175/1520-0442(1993)006<2288:CCFTIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2012: NOAA’s merged land–ocean surface temperature analysis. Bull. Amer. Meteor. Soc., 93, 16771685, doi:10.1175/BAMS-D-11-00241.1.

    • Search Google Scholar
    • Export Citation
  • Walker, G., and E. Bliss, 1932: World Weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Walker, G., and E. Bliss, 1937: World Weather VI. Mem. Roy. Meteor. Soc., 4, 119139.

  • Wallace, J. M., 1995: Natural and forced variability in the climate record. Natural Climate Variability on Decade-to-Century Time Scales, D. G. Martinson et al., Eds., National Academy Press, 199–210.

  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition and wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and J. A. Renwick, 1995: Dynamic contribution to hemispheric mean temperature trends. Science, 270, 780782, doi:10.1126/science.270.5237.780.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and L. Bajuk, 1996: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Climate, 9, 249259, doi:10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, doi:10.1073/pnas.1204875109.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 10 10 10

Dynamical Adjustment of the Northern Hemisphere Surface Air Temperature Field: Methodology and Application to Observations

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Restricted access

Abstract

The influence of atmospheric circulation changes reflected in spontaneously occurring sea level pressure (SLP) anomalies upon surface air temperature (SAT) variability and trends is investigated using partial least squares (PLS) regression, a statistical method that seeks to maximally explain covariance between a predictand time series or field and a predictor field. Applying PLS regression in any one of the three variants described in this study (pointwise, PC-wise, and fieldwise), the method yields a dynamical adjustment to the observed NH SAT field that accounts for approximately 50% of the variance in monthly mean, cold season data. It is shown that PLS regression provides a more parsimonious and statistically robust dynamical adjustment than an adjustment method based on the leading principal components of the extratropical SLP field. The usefulness of dynamical adjustment is demonstrated by applying it to the attribution of cold season SAT trends in two reference intervals: 1965–2000 and 1920–2011. The adjustment is shown to reconcile much of the spatial structure and seasonal differences in the observed SAT trends. The dynamically adjusted SAT fields obtained from this analysis provide datasets capable of being analyzed for residual variability and trends associated with thermodynamic and radiative processes.

Corresponding author address: Brian V. Smoliak, The Climate Corporation, 419 Occidental Ave. S., Suite 201, Seattle, WA 98104. E-mail: bsmoliak@climate.com

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00111.1.s1.

Current affiliation: The Climate Corporation, Seattle, Washington.

Current affiliation: Atmospheric and Oceanic Sciences Program, Princeton University/NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

Abstract

The influence of atmospheric circulation changes reflected in spontaneously occurring sea level pressure (SLP) anomalies upon surface air temperature (SAT) variability and trends is investigated using partial least squares (PLS) regression, a statistical method that seeks to maximally explain covariance between a predictand time series or field and a predictor field. Applying PLS regression in any one of the three variants described in this study (pointwise, PC-wise, and fieldwise), the method yields a dynamical adjustment to the observed NH SAT field that accounts for approximately 50% of the variance in monthly mean, cold season data. It is shown that PLS regression provides a more parsimonious and statistically robust dynamical adjustment than an adjustment method based on the leading principal components of the extratropical SLP field. The usefulness of dynamical adjustment is demonstrated by applying it to the attribution of cold season SAT trends in two reference intervals: 1965–2000 and 1920–2011. The adjustment is shown to reconcile much of the spatial structure and seasonal differences in the observed SAT trends. The dynamically adjusted SAT fields obtained from this analysis provide datasets capable of being analyzed for residual variability and trends associated with thermodynamic and radiative processes.

Corresponding author address: Brian V. Smoliak, The Climate Corporation, 419 Occidental Ave. S., Suite 201, Seattle, WA 98104. E-mail: bsmoliak@climate.com

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00111.1.s1.

Current affiliation: The Climate Corporation, Seattle, Washington.

Current affiliation: Atmospheric and Oceanic Sciences Program, Princeton University/NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

Supplementary Materials

    • Supplemental Materials (PDF 2.32 MB)
Save