Regional Assessments of Low Clouds against Large-Scale Stability in CAM5 and CAM-CLUBB Using MODIS and ERA-Interim Reanalysis Data

Terence L. Kubar Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Terence L. Kubar in
Current site
Google Scholar
PubMed
Close
,
Graeme L. Stephens Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
,
Matthew Lebsock Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Matthew Lebsock in
Current site
Google Scholar
PubMed
Close
,
Vincent E. Larson University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Vincent E. Larson in
Current site
Google Scholar
PubMed
Close
, and
Peter A. Bogenschutz National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter A. Bogenschutz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Daily gridded cloud data from MODIS and ERA-Interim reanalysis have been assessed to examine variations of low cloud fraction (CF) and cloud-top height and their dependence on large-scale dynamics and a measure of stability. To assess the stratocumulus (Sc) to cumulus (Cu) transition (STCT), the observations are used to evaluate two versions of the NCAR Community Atmosphere Model version 5 (CAM5), both the base model and a version that has implemented a new subgrid low cloud parameterization, Cloud Layers Unified by Binormals (CLUBB).

The ratio of moist static energy (MSE) at 700–1000 hPa (MSEtotal) is a skillful predictor of median CF of screened low cloud grids. Values of MSEtotal less than 1.00 represent either conditionally or absolutely unstable layers, and probability density functions of CF suggest a preponderance of either trade Cu (median CF < 0.4) or transitional Sc clouds (0.4 < CF < 0.9). With increased stability (MSEtotal > 1.00), an abundance of overcast or nearly overcast low clouds exists. While both MODIS and ERA-Interim indicate a fairly smooth transition between the low cloud regimes, CAM5-Base simulates an abrupt shift from trade Cu to Sc, with trade Cu covering both too much area and occurring over excessively strong stabilities. In contrast, CAM-CLUBB simulates a smoother trade Cu to Sc transition (CTST) as a function of MSEtotal, albeit with too extensive coverage of overcast Sc in the primary northeastern Pacific subsidence region. While the overall CF distribution in CAM-CLUBB is more realistic, too few transitional clouds are simulated for intermediate MSEtotal compared to observations.

Corresponding author address: Dr. Terence L. Kubar, Jet Propulsion Laboratory, California Institute of Technology, MS 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: terry.kubar@jpl.nasa.gov

Abstract

Daily gridded cloud data from MODIS and ERA-Interim reanalysis have been assessed to examine variations of low cloud fraction (CF) and cloud-top height and their dependence on large-scale dynamics and a measure of stability. To assess the stratocumulus (Sc) to cumulus (Cu) transition (STCT), the observations are used to evaluate two versions of the NCAR Community Atmosphere Model version 5 (CAM5), both the base model and a version that has implemented a new subgrid low cloud parameterization, Cloud Layers Unified by Binormals (CLUBB).

The ratio of moist static energy (MSE) at 700–1000 hPa (MSEtotal) is a skillful predictor of median CF of screened low cloud grids. Values of MSEtotal less than 1.00 represent either conditionally or absolutely unstable layers, and probability density functions of CF suggest a preponderance of either trade Cu (median CF < 0.4) or transitional Sc clouds (0.4 < CF < 0.9). With increased stability (MSEtotal > 1.00), an abundance of overcast or nearly overcast low clouds exists. While both MODIS and ERA-Interim indicate a fairly smooth transition between the low cloud regimes, CAM5-Base simulates an abrupt shift from trade Cu to Sc, with trade Cu covering both too much area and occurring over excessively strong stabilities. In contrast, CAM-CLUBB simulates a smoother trade Cu to Sc transition (CTST) as a function of MSEtotal, albeit with too extensive coverage of overcast Sc in the primary northeastern Pacific subsidence region. While the overall CF distribution in CAM-CLUBB is more realistic, too few transitional clouds are simulated for intermediate MSEtotal compared to observations.

Corresponding author address: Dr. Terence L. Kubar, Jet Propulsion Laboratory, California Institute of Technology, MS 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: terry.kubar@jpl.nasa.gov
Save
  • Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, doi:10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev., 5, 14071423, doi:10.5194/gmd-5-1407-2012.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, doi:10.1175/JCLI-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Roode, S., and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci., 54, 21572173, doi:10.1175/1520-0469(1997)054<2157:OLTOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, J. A. Hansen, D. P. Schanen, and B. M. Griffin, 2007: Elucidating model inadequacies in a cloud parameterization by use of an ensemble-based calibration framework. Mon. Wea. Rev., 135, 40774096, doi:10.1175/2007MWR2008.1.

    • Search Google Scholar
    • Export Citation
  • Guo, H., J.-C. Golaz, L. J. Donner, P. Ginoux, and R. S. Hemler, 2014: Multivariate probability density functions with dynamics in the GFDL atmospheric general circulation model: Global tests. J. Climate, 27, 2087–2108, doi:10.1175/JCLI-D-13-00347.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hubanks, P. A., M. D. King, S. Platnick, and R. Pincus, 2008: MODIS atmosphere L3 gridded product. MODIS Algorithm Theoretical Basis Doc. ATBD-MOD-08, 96 pp.

  • Iacobellis, S. F., and D. R. Cayan, 2013: The variability of California summertime marine stratus: Impacts on surface air temperatures. J. Geophys. Res. Atmos., 118, 9105–9122, doi:10.1002/jgrd.50652.

    • Search Google Scholar
    • Export Citation
  • Jones, C., C. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-Rex. Atmos. Chem. Phys., 11, 71437153, doi:10.5194/acp-11-7143-2011.

    • Search Google Scholar
    • Export Citation
  • Kawai, H., and J. Teixeira, 2010: Probability density functions of liquid water path and cloud amount of marine boundary layer clouds: Geographical and seasonal variations and controlling meteorological factors. J. Climate, 23, 20792092, doi:10.1175/2009JCLI3070.1.

    • Search Google Scholar
    • Export Citation
  • King, N. J., K. N. Bower, J. Crosier, and I. Crawford, 2013: Evaluating MODIS cloud retrievals with in situ observations from VOCALS-Rex. Atmos. Chem. Phys., 13, 191209, doi:10.5194/acp-13-191-2013.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koshiro, T., and M. Shiotani, 2014: Relationship between low stratiform cloud amount and estimated inversion strength in the lower troposphere over the global ocean in terms of cloud types. J. Meteor. Soc. Japan,92, 107–120, doi:10.2151/jmsj.2014-107.

  • Kubar, T. L., D. E. Waliser, and J.-L. Li, 2011: Boundary layer and cloud structure controls on tropical low cloud cover using A-Train satellite data and ECMWF analyses. J. Climate, 24, 194215, doi:10.1175/2010JCLI3702.1.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, J.-L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of ocean low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 61526174, doi:10.1175/JCLI-D-11-00478.1.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., and J.-C. Golaz, 2005: Using probability density functions to derive consistent closure relationships among higher-order moments. Mon. Wea. Rev., 133, 10231042, doi:10.1175/MWR2902.1.

    • Search Google Scholar
    • Export Citation
  • Lin, W., M. Zhang, and N. G. Loeb, 2009: Seasonal variation of the physical properties of marine boundary layer clouds off the California coast. J. Climate, 22, 26242638, doi:10.1175/2008JCLI2478.1.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., 2009: Factors influencing cloud area at the capping inversion for shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 941952, doi:10.1002/qj.424.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Rep. NCAR/TN-486+STR, 268 pp.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, doi:10.1175/2011JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 26–35.

  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5157, doi:10.1175/BAMS-86-1-51.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, doi:10.1007/s00382-008-0443-1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, doi:10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., T. Wong, and B. A. Wielicki, 2008: Statistical analyses of satellite cloud object data from CERES. Part IV: boundary layer cloud objects during 1998 El Niño. J. Climate, 21, 15001521, doi:10.1175/2007JCLI1710.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, G., and L. Di Girolamo, 2006: Cloud fraction errors for trade wind cumuli from EOS-Terra instruments. Geophys. Res. Lett., 33, L20802, doi:10.1029/2006GL027088.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., D. Painemal, S. de Szoeke, and C. Fairall, 2009: Stratocumulus cloud-top height estimates and their climatic implications. J. Climate, 22, 46524666, doi:10.1175/2009JCLI2708.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 71 6
PDF Downloads 146 41 3