Abstract
This study examines the changes in tropical cyclone (TC) precipitation and the associated contributing factors over southeast China during 1960–2009. Climatologically, TC rainfall accounts for approximately 20%–40% of the total rainfall over southeast China during boreal summer, and the contribution can even reach 50% for some of the coastal provinces, such as Guangdong, Fujian, Zhejiang, and Hainan. The dominant mode of TC rainfall reveals a dipole pattern over southern southeast China (SSC) and eastern southeast China (ESC), and the associated principal component time series exhibits remarkable interdecadal variations, with two potential change points being identified in the late 1970s and early 1990s. These interdecadal shifts in TC rainfall are also found to be synchronous with two regime shifts in total rainfall, and they can account for more than 40% of the total rainfall anomalies over the coastal regions of southeast China.
To discover the dominant factors responsible for the interdecadal variations, the overall TC rainfall anomalies are broken down into three different components (rainfall frequency, rainfall intensity, and nonlinear terms) based on a new empirical statistical approach. It is found that the interdecadal variation in TC precipitation over SSC is controlled predominantly by changes in TC rainfall intensity as well as TC rainfall frequency, while that over ESC depends mainly on the intensity and the nonlinear terms. Further examination of the TC passage frequency (TPF) suggests that the significant reduction in TPF and TC rainfall frequency over SSC during 1979–92 is associated mainly with suppressed TC genesis (negative genesis effect), while the increase in TPF and TC rainfall frequency during 1993–2009 can be attributed primarily to the enhanced passage probability (positive track effect) over SSC. Meanwhile, variations in TC rainfall intensity seem to be unrelated to the TC’s own intensity change.