The Forcing of Southwestern Asia Teleconnections by Low-Frequency Sea Surface Temperature Variability during Boreal Winter

Andrew Hoell Department of Geography, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Andrew Hoell in
Current site
Google Scholar
PubMed
Close
,
Chris Funk U.S. Geological Survey, and Department of Geography, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Chris Funk in
Current site
Google Scholar
PubMed
Close
, and
Mathew Barlow Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, Massachusetts

Search for other papers by Mathew Barlow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

Corresponding author address: Andrew Hoell, Department of Geography, University of California, Santa Barbara, 4717 Ellison Hall, Santa Barbara, CA 93106. E-mail: hoell@geog.ucsb.edu

Abstract

Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

Corresponding author address: Andrew Hoell, Department of Geography, University of California, Santa Barbara, 4717 Ellison Hall, Santa Barbara, CA 93106. E-mail: hoell@geog.ucsb.edu
Save
  • Agrawala, S., M. Barlow, H. Cullen, and B. Lyon, 2001: The drought and humanitarian crisis in central and southwest Asia: A climate perspective. IRI Special Rep. 01-11, 24 pp.

  • Alijani, B., 2008: Effect of the Zagros Mountains on the spatial distribution of precipitation. J. Mt. Sci., 5, 218231, doi:10.1007/s11629-008-0126-8.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., P. J. Pegion, S. Schubert, and M. J. Suarez, 1994: An atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. NASA Tech. Memo. 104606, Goddard Space Flight Center, Vol. 17, 222 pp.

  • Barlow, M., 2011: The Madden–Julian oscillation influence on Africa and west Asia. Intraseasonal Variability in the Coupled Tropical Ocean–Atmosphere System, W. Lau and D. Waliser, Eds., Praxis, 477–493.

  • Barlow, M., and M. K. Tippett, 2008: Variability and predictability of central Asia river flows: Antecedent winter precipitation and large-scale teleconnections. J. Hydrometeor., 9, 13341349, doi:10.1175/2008JHM976.1.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, doi:10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., M. Wheeler, B. Lyon, and H. Cullen, 2005: Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon. Wea. Rev., 133, 35793594, doi:10.1175/MWR3026.1.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., A. Hoell, and F. Colby, 2007: Examining the wintertime response to tropical convection over the Indian Ocean by modifying convective heating in a full atmospheric model. Geophys. Res. Lett.,34, L19702, doi:10.1029/2007GL030043.

  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Campana, K., and P. Caplan, 2005: Technical procedure bulletin for the T382 Global Forecast System. NOAA/NCEP/EMC. [Available online at http://www.emc.ncep.noaa.gov/gc_wmb/Documentation/TPBoct05/T382.TPB.FINAL.htm.]

  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, doi:10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, doi:10.1175/2009JCLI2735.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., and C. Funk, 2013: The ENSO-related west Pacific sea surface temperature gradient. J. Climate, 26, 95459562, doi:10.1175/JCLI-D-12-00344.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., and C. Funk, 2014: Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Climate Dyn., 43, 1645–1660, doi:10.1007/s00382-013-1991-6.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Barlow, and R. Saini, 2012: The leading pattern of intraseasonal and interannual Indian Ocean precipitation variability and its relationship with Asian circulation during the boreal cold season. J. Climate, 25, 75097526, doi:10.1175/JCLI-D-11-00572.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Barlow, and R. Saini, 2013: Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. J. Climate, 26, 88508867, doi:10.1175/JCLI-D-12-00306.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2014a: The regional forcing of Northern Hemisphere drought during recent warm tropical west Pacific Ocean La Niña events. Climate Dyn., 42, 3289–3311, doi:10.1007/s00382-013-1799-4.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2014b: La Niña diversity and northwest Indian Ocean rim teleconnections. Climate Dyn., 43, 2707–2724, doi:10.1007/s00382-014-2083-y.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694, doi:10.1126/science.1079053.

  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Kaiser, H., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200, doi:10.1007/BF02289233.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kariyeva, J., and W. J. van Leeuwen, 2012: Phenological dynamics of irrigated and natural drylands in central Asia before and after the USSR collapse. Agric. Ecosyst. Environ., 162, 7789, doi:10.1016/j.agee.2012.08.006.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Meteor., 18, 172191, doi:10.1175/1520-0469(1961)018<0172:TSJSOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., A. Barnston, and D. DeWitt, 2014: Tropical Pacific forcing of a 1998–1999 climate shift: Observational analysis and climate model results for the boreal spring season. Climate Dyn., 43, 893–909, doi:10.1007/s00382-013-1891-9.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett.,34, L16706, doi:10.1029/2007GL030078.

  • Martyn, D., 1992: Climates of the World. Elsevier, 435 pp.

  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623, doi:10.1175/JCLI3675.1.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299, doi:10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nazemosadat, M. J., and H. Ghaedamini, 2010: On the relationships between the Madden–Julian oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmospheric circulation analysis. J. Climate, 23, 887904, doi:10.1175/2009JCLI2141.1.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, doi:10.1126/science.1128845.

    • Search Google Scholar
    • Export Citation
  • Pegion, P. J., and A. Kumar, 2010: Multimodel estimates of atmospheric response to modes of SST variability and implications for droughts. J. Climate, 23, 43274341, doi:10.1175/2010JCLI3295.1.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., A. T. Evan, C. Monfreda, and J. A. Foley, 2008: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles, 22, GB1003, doi:10.1029/2007GB002952.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ryan, J., R. Sommer, and H. Ibrikci, 2012: Fertilizer best management practices: A perspective from the dryland west Asia–North Africa region. J. Agron. Crop Sci., 198, 5767, doi:10.1111/j.1439-037X.2011.00488.x.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, P. L. Vidale, and C. Schär, 2008: The precipitation climate of central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, doi:10.1002/joc.1532.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, doi:10.1175/2008JCLI2625.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, doi:10.1175/JCLI3391.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific Ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, doi:10.1038/nclimate1591.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 544 189 9
PDF Downloads 553 113 3