New Perspectives on Observed and Simulated Antarctic Sea Ice Extent Trends Using Optimal Fingerprinting Techniques

William Richard Hobbs Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, and Australian Research Council Centre of Excellence for Climate System Science, Sydney, New South Wales, Australia

Search for other papers by William Richard Hobbs in
Current site
Google Scholar
PubMed
Close
,
Nathaniel L. Bindoff Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, and Australian Research Council Centre of Excellence for Climate System Science, Sydney, New South Wales, and CSIRO Marine Atmospheric Research, Hobart, Tasmania, and ACE CRC, Hobart, Tasmania, and CAWCR, Melbourne, Victoria, Australia

Search for other papers by Nathaniel L. Bindoff in
Current site
Google Scholar
PubMed
Close
, and
Marilyn N. Raphael Department of Geography, University of California, Los Angeles, Los Angeles, California

Search for other papers by Marilyn N. Raphael in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using optimal fingerprinting techniques, a detection analysis is performed to determine whether observed trends in Southern Ocean sea ice extent since 1979 are outside the expected range of natural variability. Consistent with previous studies, it is found that for the seasons of maximum sea ice cover (i.e., winter and early spring), the observed trends are not outside the range of natural variability and in some West Antarctic sectors they may be partially due to tropical variability. However, when information about the spatial pattern of trends is included in the analysis, the summer and autumn trends fall outside the range of internal variability. The detectable signal is dominated by strong and opposing trends in the Ross Sea and the Amundsen–Bellingshausen Sea regions. In contrast to the observed pattern, an ensemble of 20 CMIP5 coupled climate models shows that a decrease in Ross Sea ice cover would be expected in response to external forcings. The simulated decreases in the Ross, Bellingshausen, and Amundsen Seas for the autumn season are significantly different from unforced internal variability at the 95% confidence level. Unlike earlier work, the authors formally show that the simulated sea ice response to external forcing is different from both the observed trends and simulated internal variability and conclude that in general the CMIP5 models do not adequately represent the forced response of the Antarctic climate system.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00367.s1.

Corresponding author address: Will Hobbs, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart TAS 7000, Australia. E-mail: whobbs@utas.edu.au

Abstract

Using optimal fingerprinting techniques, a detection analysis is performed to determine whether observed trends in Southern Ocean sea ice extent since 1979 are outside the expected range of natural variability. Consistent with previous studies, it is found that for the seasons of maximum sea ice cover (i.e., winter and early spring), the observed trends are not outside the range of natural variability and in some West Antarctic sectors they may be partially due to tropical variability. However, when information about the spatial pattern of trends is included in the analysis, the summer and autumn trends fall outside the range of internal variability. The detectable signal is dominated by strong and opposing trends in the Ross Sea and the Amundsen–Bellingshausen Sea regions. In contrast to the observed pattern, an ensemble of 20 CMIP5 coupled climate models shows that a decrease in Ross Sea ice cover would be expected in response to external forcings. The simulated decreases in the Ross, Bellingshausen, and Amundsen Seas for the autumn season are significantly different from unforced internal variability at the 95% confidence level. Unlike earlier work, the authors formally show that the simulated sea ice response to external forcing is different from both the observed trends and simulated internal variability and conclude that in general the CMIP5 models do not adequately represent the forced response of the Antarctic climate system.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00367.s1.

Corresponding author address: Will Hobbs, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart TAS 7000, Australia. E-mail: whobbs@utas.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 1.32 MB)
Save
  • Abram, N. J., E. W. Wolff, and M. A. J. Curran, 2013: A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev., 79, 168183, doi:10.1016/j.quascirev.2013.01.011.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419434, doi:10.1007/s003820050291.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Bamber, J., M. van den Broeke, J. Ettema, J. Lenaerts, and E. Rignot, 2012: Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett.,39, L19501, doi:10.1029/2012GL052552.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2012: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation. Geosci. Model Dev. Discuss., 5, 28432931, doi:10.5194/gmdd-5-2843-2012.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2014: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. D. Stocker et al., Eds., Cambridge University Press, 967–952.

  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett.,39, L20705, doi:10.1029/2012GL053393.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally, 1999: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104, 15 80315 814, doi:10.1029/1999JC900081.

    • Search Google Scholar
    • Export Citation
  • Close, S. E., and H. Goosse, 2013: Entrainment-driven modulation of Southern Ocean mixed layer properties and sea ice variability in CMIP5 models. J. Geophys. Res. Oceans, 118, 28112827, doi:10.1002/jgrc.20226.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2014: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Curran, M. A. J., T. D. van Ommen, V. I. Morgan, K. L. Phillips, and A. S. Palmer, 2003: Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302, 12031206, doi:10.1126/science.1087888.

    • Search Google Scholar
    • Export Citation
  • Ding, H., R. J. Greatbatch, and G. Gollan, 2014: Tropical influence independent of ENSO on the austral summer Southern Annular Mode. Geophys. Res. Lett.,41, 3643–3648, doi:10.1002/2014GL059987.

  • Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Kuttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., W. N. Meier, and J. R. Norris, 2014: A spurious jump in the satellite record: Has Antarctic sea ice expansion been overestimated? Cryosphere, 8, 12891296, doi:10.5194/tc-8-1289-2014.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Fan, T., C. Deser, and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett.,41, 2419–2426, doi:10.1002/2014GL059239.

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 Coupled Climate Model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., and M. N. Raphael, 2010: The Pacific zonal asymmetry and its influence on Southern Hemisphere sea ice variability. Antarct. Sci., 22, 559571, doi:10.1017/S0954102010000283.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophys. Res. Lett.,41, 4230–4237, doi:10.1002/2014GL060172.

  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, doi:10.1175/JCLI-D-12-00813.1.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2010: How the annual cycle affects the extratropical response to ENSO. J. Geophys. Res.,115, D06102, doi:10.1029/2009JD012660.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM), the ocean component of the MPI-Earth system model. J. Adv. Model Earth. Syst., 5, 422446, doi:10.1002/jame.20023.

    • Search Google Scholar
    • Export Citation
  • Kimura, N., and M. Wakatsuchi, 2011: Large-scale processes governing the seasonal variability of the Antarctic sea ice. Tellus,63, 828–840, doi:10.1111/J.1600-0870.2011.00526.X.

  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, doi:10.1002/grl.50256.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land System Model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, doi:10.1038/nature12945.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., P. R. Gent, and S. Solomon, 2013: Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 51055110, doi:10.1002/jgrd.50443.

    • Search Google Scholar
    • Export Citation
  • Maksym, T., S. E. Stammerjohn, S. Ackley, and R. Massom, 2012: Antarctic sea ice—A polar opposite? Oceanography, 25, 140151, doi:10.5670/oceanog.2012.88.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2013a: NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. National Snow and Ice Data Center, Boulder, CO. [Available online at http://nsidc.org/data/docs/noaa/g02202_ice_conc_cdr/.]

  • Meier, W. N., D. Gallaher, and G. G. Campbell, 2013b: New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere, 7, 699705, doi:10.5194/tc-7-699-2013.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., and S. Bony, 2013: Presentation and analysis of the IPSL and CNRM climate models used in CMIP5. Climate Dyn., 40, 20892089, doi:10.1007/s00382-013-1720-1.

    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. B. Zhang, F. W. Zwiers, and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett.,35, L21701, doi:10.1029/2008GL035725.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., R. J. Matear, M. A. Chamberlain, J. S. Risbey, B. M. Sloyan, and I. Horenko, 2013: Decadal variability in an OGCM Southern Ocean: Intrinsic modes, forced modes and metastable states. Ocean Modell., 69, 121, doi:10.1016/j.ocemod.2013.04.009.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., D. Schneider, C. Deser, and R. Wilson, 2012: Decadal-interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data. J. Climate, 25, 74217441, doi:10.1175/JCLI-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979-2010. Cryosphere, 6, 871880, doi:10.5194/tc-6-871-2012.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, doi:10.1002/grl.50578.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2007: The influence of atmospheric zonal wave three on Antarctic sea ice variability. J. Geophys. Res.,112, D12112, doi:10.1029/2006JD007852.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and W. Hobbs, 2014: The influence of the large-scale atmospheric circulation on Antarctic sea ice during ice advance and retreat seasons. Geophys. Res. Lett., 41, 50375045, doi:10.1002/2014GL060365.

    • Search Google Scholar
    • Export Citation
  • Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 28172836, doi:10.1007/s00382-013-1735-7.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., S. J. Jeffrey, M. A. Collier, S. M. Dravitzki, A. C. Hirst, J. I. Syktus, and K. K. Wong, 2012: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 63776404, doi:10.5194/acp-12-6377-2012.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model Earth Syst.,6, 141–184, doi:10.1002/2013ms000265.

  • Schneider, D. P., C. Deser, and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett.,37, L18502, doi:10.1029/2010GL044301.

  • Simpkins, G. R., L. M. Ciasto, and M. H. England, 2013: Observed variations in multidecadal Antarctic sea ice trends during 1979-2012. Geophys. Res. Lett., 40, 36433648, doi:10.1002/grl.50715.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., S. McGregor, A. S. Taschetto, L. M. Ciasto, and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, doi:10.1175/JCLI-D-13-00615.1.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett.,39, L16502, doi:10.1029/2012GL052676.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, doi:10.1002/grl.50820.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, doi:10.1175/JCLI-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2012: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn.,40, 2091–2121, doi:10.1007/s00382-011-1259-y.

  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmd-4-845-2011.

    • Search Google Scholar
    • Export Citation
  • Xin, X.-G., T.-W. Wu, and J. Zhang, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv. Climate Change Res., 4, 4149, doi:10.3724/SP.J.1248.2013.00041.

    • Search Google Scholar
    • Export Citation
  • Yuan, X. J., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, doi:10.1017/S0954102004002238.

    • Search Google Scholar
    • Export Citation
  • Yuan, X. J., and D. G. Martinson, 2001: The Antarctic dipole and its predictability. Geophys. Res. Lett., 28, 36093612, doi:10.1029/2001GL012969.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. L., 2007: Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J. Climate, 20, 25152529, doi:10.1175/JCLI4136.1.

    • Search Google Scholar
    • Export Citation
  • Zunz, V., H. Goosse, and F. Massonnet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere, 7, 451468, doi:10.5194/tc-7-451-2013.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial-correlation into account in tests of the mean. J. Climate, 8, 336351, doi:10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 970 255 8
PDF Downloads 481 111 5