A Further Study of ENSO Rectification: Results from an OGCM with a Seasonal Cycle

Lijuan Hua State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijuan Hua in
Current site
Google Scholar
PubMed
Close
,
Yongqiang Yu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yongqiang Yu in
Current site
Google Scholar
PubMed
Close
, and
De-Zheng Sun Cooperative Institute for Research in Environmental Sciences, University of Colorado and NOAA/ESRL, Boulder, Colorado

Search for other papers by De-Zheng Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The potential role that rectification of ENSO plays as a viable mechanism to generate climate anomalies on the decadal and longer time scales demands a thorough study of this process. In this paper, rectification of ENSO was studied using an ocean GCM that has a realistic seasonal cycle. In addition to conducting a pair of forced ocean GCM experiments with and without ENSO fluctuations, as done in a previous study, a forced experiment was also conducted with the sign of wind anomalies reversed, with the goal of clarifying the role of the asymmetry in the wind forcing and more generally to better understand the nonlinear dynamics responsible for the rectification. It is found that the rectification effect of ENSO is to cool the western Pacific warm pool and warm the eastern equatorial Pacific. Further, it is found that when the sign of the wind stress anomalies is reversed the impact of the rectification on the mean state remains almost unchanged. This lack of change is further explained by noting that the upper-ocean temperature and velocity anomalies (T′, u′, υ′, and w′) are found to respond to the wind stress anomalies linearly, except for the strongest El Niño years. Thus, the correlation between T′ and (u′, υ′, w′) [and thus the nonlinear dynamical heating (NDH)] remains the same when the sign of the wind stress anomalies is reversed. Indeed, the spatial patterns of NDH in all four seasons are found to resemble the rectified effect of ENSO in the mean temperature field in the respective seasons, indicating the critical role of NDH in the rectification.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00404.s1.

Corresponding author address: Dr. Yongqiang Yu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40, Hua Yan Li, Beijing 100029, China. E-mail: yyq@lasg.iap.ac.cn

Abstract

The potential role that rectification of ENSO plays as a viable mechanism to generate climate anomalies on the decadal and longer time scales demands a thorough study of this process. In this paper, rectification of ENSO was studied using an ocean GCM that has a realistic seasonal cycle. In addition to conducting a pair of forced ocean GCM experiments with and without ENSO fluctuations, as done in a previous study, a forced experiment was also conducted with the sign of wind anomalies reversed, with the goal of clarifying the role of the asymmetry in the wind forcing and more generally to better understand the nonlinear dynamics responsible for the rectification. It is found that the rectification effect of ENSO is to cool the western Pacific warm pool and warm the eastern equatorial Pacific. Further, it is found that when the sign of the wind stress anomalies is reversed the impact of the rectification on the mean state remains almost unchanged. This lack of change is further explained by noting that the upper-ocean temperature and velocity anomalies (T′, u′, υ′, and w′) are found to respond to the wind stress anomalies linearly, except for the strongest El Niño years. Thus, the correlation between T′ and (u′, υ′, w′) [and thus the nonlinear dynamical heating (NDH)] remains the same when the sign of the wind stress anomalies is reversed. Indeed, the spatial patterns of NDH in all four seasons are found to resemble the rectified effect of ENSO in the mean temperature field in the respective seasons, indicating the critical role of NDH in the rectification.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00404.s1.

Corresponding author address: Dr. Yongqiang Yu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40, Hua Yan Li, Beijing 100029, China. E-mail: yyq@lasg.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 4.45 MB)
Save
  • An, S. I., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686, doi:10.1175/2008JCLI1701.1.

    • Search Google Scholar
    • Export Citation
  • An, S. I., and F. F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and M. S. Dubovikov, 2005: Modeling mesoscale eddies. Ocean Modell., 8, 130, doi:10.1016/j.ocemod.2003.11.003.

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., N. Wienders, and W. K. Dewar, 2013: CheapAML: A simple, atmospheric boundary layer model for use in ocean-only model calculations. Mon. Wea. Rev., 141, 809821, doi:10.1175/MWR-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and M. A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. Comput. Phys., 81, 444480, doi:10.1016/0021-9991(89)90216-7.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Normuram, and E. Serrano, 1997: ERA description. ECMWF Re-Analysis Project Rep., 72 pp.

  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., S. I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2004: Internal variability in the tropical Pacific Ocean. Geophys. Res. Lett., 31, L14309, doi:10.1029/2004GL020488.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36, 592605, doi:10.1175/JPO2870.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, doi:10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Liang, J., X. Q. Yang, and D. Z. Sun, 2012: The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J. Climate, 25, 75907606, doi:10.1175/JCLI-D-11-00490.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H. L., X. Zhang, W. Li, Y. Yu, and R. Yu, 2004a: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21, 675290, doi:10.1007/BF02916365.

    • Search Google Scholar
    • Export Citation
  • Liu, H. L., X. Zhang, Y. Yu, and W. Li, 2004b: Manual for LASG/IAP Climate System Ocean Model (in Chinese). Science Press, 108 pp.

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteor. Sin., 26, 318329, doi:10.1007/s13351-012-0305-y.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, doi:10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., R. Seager, and A. J. Busalacchi, 1996: Simulation of the tropical oceans with an ocean GCM coupled to an atmospheric mixed-layer model. J. Climate, 9, 17951815, doi:10.1175/1520-0442(1996)009<1795:SOTTOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ogata, T., S. P. Xie, A. Wittenberg, and D. Z. Sun, 2013: Interdecadal amplitude modulation of El Niño–Southern Oscillation and its impacts on tropical Pacific decadal variability. J. Climate, 26, 72807297, doi:10.1175/JCLI-D-12-00415.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774, doi:10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roeske, F., 2001: An atlas of surface flues based on the ECMWF reanalysis—A climatological dataset to force global ocean general circulation models. Max-Planck-Institut für Meteorologie Rep. 23, 31 pp.

  • Schopf, P. S., and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19, 31673179, doi:10.1175/JCLI3765.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Blumenthal, and Y. Kushnir, 1995: An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes. J. Climate, 8, 19511964, doi:10.1175/1520-0442(1995)008<1951:AAAMLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, J. Z., R. H. Zhang, T. Li, X. Rong, J. S. Kug, and C. C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, doi:10.1175/2009JCLI2894.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 53, 27862802.

  • Sun, D. Z., 1997: El Niño: A coupled response to radiative heating? Geophys. Res. Lett., 24, 20312034, doi:10.1029/97GL01960.

  • Sun, D. Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16, 185205, doi:10.1175/1520-0442(2003)016<0185:APEOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710, doi:10.1029/2005GL025384.

    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., T. Zhang, and S. I. Shin, 2004: The effect of subtropical cooling on the amplitude of ENSO: A numerical study. J. Climate, 17, 37863798, doi:10.1175/1520-0442(2004)017<3786:TEOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., Y. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 12871304, doi:10.1175/2008JCLI2267.1.

    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., T. Zhang, S. Yan, and Y. Yu, 2014: Rectification of El Niño–Southern Oscillation into climate anomalies of longer time-scales: Results from forced ocean GCM experiments. J. Climate, 27, 25452561, doi:10.1175/JCLI-D-13-00390.1.

    • Search Google Scholar
    • Export Citation
  • Sun, F. P., and J. Y. Yu, 2009: A 10–15-yr modulation cycle of ENSO intensity. J. Climate, 22, 17181735, doi:10.1175/2008JCLI2285.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F. F. Jin, 2002: Phytoplankton influences on tropical climate. Geophys. Res. Lett., 29, 2104, doi:10.1029/2002GL015434.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 48074821, doi:10.1175/2010JCLI3222.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and S. T. Kim, 2011: Reversed spatial asymmetries between El Niño and La Niño and their linkage to decadal ENSO modulation in CMIP3 models. J. Climate, 24, 54235434, doi:10.1175/JCLI-D-11-00024.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y. Q., and D. Z. Sun, 2009: Response of ENSO and the mean state of the tropical Pacific to extratropical cooling/warming: A study using the IAP coupled model. J. Climate, 22, 59025917, doi:10.1175/2009JCLI2902.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y. Q., W. P. Zheng, H. L. Liu, and X. H. Zhang, 2007: The LASG Coupled Climate System Model FGCM-1.0 (in Chinese). Chin. J. Geophys., 50, 16771687.

    • Search Google Scholar
    • Export Citation
  • Yu, Y. Q., H. Zhi, B. Wang, H. Wan, H. L. Liu, W. Li, W. P. Zheng, and T. Zhou, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25, 641654, doi:10.1007/s00376-008-0641-0.

    • Search Google Scholar
    • Export Citation
  • Yu, Y. Q., W. Zheng, B. Wang, H. Liu, and J. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean-Atmosphere-Land System model. Adv. Atmos. Sci., 28, 99117, doi:10.1007/s00376-010-9112-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 672 366 8
PDF Downloads 302 78 9