Spectral Signatures of Earth’s Climate Variability over 5 Years from IASI

Helen Brindley Space and Atmospheric Physics Group, Imperial College London, London, United Kingdom

Search for other papers by Helen Brindley in
Current site
Google Scholar
PubMed
Close
,
Richard Bantges Space and Atmospheric Physics Group, Imperial College London, London, United Kingdom

Search for other papers by Richard Bantges in
Current site
Google Scholar
PubMed
Close
,
Jacqueline Russell Space and Atmospheric Physics Group, Imperial College London, London, United Kingdom

Search for other papers by Jacqueline Russell in
Current site
Google Scholar
PubMed
Close
,
Jonathan Murray Space and Atmospheric Physics Group, Imperial College London, London, United Kingdom

Search for other papers by Jonathan Murray in
Current site
Google Scholar
PubMed
Close
,
Christopher Dancel Space and Atmospheric Physics Group, Imperial College London, London, United Kingdom

Search for other papers by Christopher Dancel in
Current site
Google Scholar
PubMed
Close
,
Claudio Belotti Space and Atmospheric Physics Group, Imperial College London, London, United Kingdom

Search for other papers by Claudio Belotti in
Current site
Google Scholar
PubMed
Close
, and
John Harries Space and Atmospheric Physics Group, Imperial College London, London, United Kingdom

Search for other papers by John Harries in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Interannual variability in spectrally resolved longwave radiances is quantified at a variety of spatial scales using 5 yr of IASI observations. Maximum variability is seen at the smallest scales investigated (10° zonal means) at northern and southern high latitudes across the center of the 15-µm CO2 band. As the spatial scale increases, the overall magnitude of interannual variability is reduced across the spectrum and the spectral shape of the variability changes. In spectral regions sensitive to conditions in the upper troposphere, the effect of increasing spatial scale is relatively small and at the global scale these parts of the spectrum show the greatest year-to-year variability. Conversely, the atmospheric window (8–12 µm), which is sensitive to variations in surface temperature and cloud, shows a marked reduction in interannual variability with increasing spatial scale. Over the 5 yr studied, at global scales the standard deviation in annual mean brightness temperature is less than 0.17 K across the spectrum, dropping to less than 0.05 K across the window. Spectrally integrating the IASI measurements to create pseudobroadband and window channels indicates a variation about the mean that is higher for the broadband channel than for the window channel at the global and quasi-global scales and over the Southern Hemisphere. These findings are in agreement with observations from CERES Terra over the same period and imply that at the largest spatial scales, over the period considered here, fluctuations in mid- to upper-tropospheric temperatures and water vapor, and not cloud or surface temperature, play the dominant role in determining the level of interannual variability in all-sky outgoing longwave radiation.

Corresponding author address: Helen Brindley, Space and Atmospheric Physics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom. E-mail: h.brindley@imperial.ac.uk

Abstract

Interannual variability in spectrally resolved longwave radiances is quantified at a variety of spatial scales using 5 yr of IASI observations. Maximum variability is seen at the smallest scales investigated (10° zonal means) at northern and southern high latitudes across the center of the 15-µm CO2 band. As the spatial scale increases, the overall magnitude of interannual variability is reduced across the spectrum and the spectral shape of the variability changes. In spectral regions sensitive to conditions in the upper troposphere, the effect of increasing spatial scale is relatively small and at the global scale these parts of the spectrum show the greatest year-to-year variability. Conversely, the atmospheric window (8–12 µm), which is sensitive to variations in surface temperature and cloud, shows a marked reduction in interannual variability with increasing spatial scale. Over the 5 yr studied, at global scales the standard deviation in annual mean brightness temperature is less than 0.17 K across the spectrum, dropping to less than 0.05 K across the window. Spectrally integrating the IASI measurements to create pseudobroadband and window channels indicates a variation about the mean that is higher for the broadband channel than for the window channel at the global and quasi-global scales and over the Southern Hemisphere. These findings are in agreement with observations from CERES Terra over the same period and imply that at the largest spatial scales, over the period considered here, fluctuations in mid- to upper-tropospheric temperatures and water vapor, and not cloud or surface temperature, play the dominant role in determining the level of interannual variability in all-sky outgoing longwave radiation.

Corresponding author address: Helen Brindley, Space and Atmospheric Physics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom. E-mail: h.brindley@imperial.ac.uk
Save
  • Blumstein, D., B. Tournier, F. Cayla, T. Phulpin, R. Fjortoft, C. Buil, and G. Ponce, 2007: In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS, M. D. Goldberg et al., Eds. International Society for Optical Engineering (SPIE Proceedings, Vol. 6684), H6840–H6840, doi:10.1117/12.734162.

  • Brindley, H., and R. Allan, 2003: Simulations of the effects of interannual and decadal variability on the clear-sky outgoing longwave radiation spectrum. Quart. J. Roy. Meteor. Soc., 129, 29712988, doi:10.1256/qj.02.216.

    • Search Google Scholar
    • Export Citation
  • Brindley, H., and J. Harries, 2003a: Observations of the infrared outgoing spectrum of the earth from space: The effects of temporal and spatial sampling. J. Climate, 16, 38203833, doi:10.1175/1520-0442(2003)016<3820:OOTIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brindley, H., and J. Harries, 2003b: The impact of instrument field of view on measurements of cloudy-sky spectral radiances from space: Application to IRIS and IMG. J. Quant. Spectrosc. Radiat. Transfer, 78, 341352, doi:10.1016/S0022-4073(02)00227-3.

    • Search Google Scholar
    • Export Citation
  • Chahine, M., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, doi:10.1175/BAMS-87-7-911.

    • Search Google Scholar
    • Export Citation
  • Charlock, T., 1984: CO2 induced climatic-change and spectral variations in the outgoing terrestrial infrared radiation. Tellus, 36B, 139148, doi:10.1111/j.1600-0889.1984.tb00236.x.

    • Search Google Scholar
    • Export Citation
  • Charlton, A., and L. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Goody, R., R. Haskins, W. Abdou, and L. Chen, 1995: Detection of climate forcing using emission spectra. Earth Obs. Remote Sens., 13, 713722.

    • Search Google Scholar
    • Export Citation
  • Griggs, J., and J. Harries, 2007: Comparison of spectrally resolved outgoing longwave radiation over the tropical Pacific between 1970 and 2003 using IRIS, IMG, and AIRS. J. Climate, 20, 39824001, doi:10.1175/JCLI4204.1.

    • Search Google Scholar
    • Export Citation
  • Hanel, R., B. Conrath, V. Kunde, C. Prabhakara, I. Revah, V. Salomonson, and G. Wolford, 1972: The Nimbus 4 infrared spectroscopy experiment: 1. Calibrated thermal emission spectra. J. Geophys. Res., 77, 26292641, doi:10.1029/JC077i015p02629.

    • Search Google Scholar
    • Export Citation
  • Harries, J., H. Brindley, P. Sagoo, and R. Bantges, 2001: Increases in greenhouse forcing inferred from the outgoing longwave spectra of the earth in 1970 and 1997. Nature, 410, 355357, doi:10.1038/35066553.

    • Search Google Scholar
    • Export Citation
  • Harries, J., and Coauthors, 2008: The far-infrared Earth. Rev. Geophys., 46, RG4004, doi:10.1029/2007RG000233.

  • Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347–370, doi:10.1175/BAMS-D-11-00027.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and V. Ramaswamy, 2008: Observed and simulated seasonal co-variations of outgoing longwave radiation spectrum and surface temperature. Geophys. Res. Lett., 35, L17803, doi:10.1029/2008GL034859.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and V. Ramaswamy, 2009: Evolution and trend of the outgoing longwave radiation spectrum. J. Climate, 22, 46374651, doi:10.1175/2009JCLI2874.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. Leroy, P. J. Gero, J. Dykema, and J. Anderson, 2010: Separation of longwave climate feedbacks from spectral observations. J. Geophys. Res., 115, D07104, doi:10.1029/2009JD012766.

    • Search Google Scholar
    • Export Citation
  • Iacono, M., and S. Clough, 1996: Application of infrared spectrometer clear sky spectral radiance to investigations of climate variability. J. Geophys. Res., 101, 29 43929 460, doi:10.1029/96JD02585.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Detection of atmospheric changes in spatially and temporally averaged infrared spectra observed from space. J. Climate, 24, 63926407, doi:10.1175/JCLI-D-10-05005.1.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J., 1986: Changes in the radiative balance of the atmosphere due to increases in CO2 and trace gases. Adv. Space Res., 6, 5560, doi:10.1016/0273-1177(86)90458-8.

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D., R. Goody, and J. Anderson, 2005: Analysis of sampling errors for climate monitoring satellites. J. Climate, 18, 810822, doi:10.1175/JCLI-3301.1.

    • Search Google Scholar
    • Export Citation
  • Kishore, P., S. Namboothiri, K. Igarashi, J. Jiang, C. Ao, and L. Romans, 2006: Climatological characteristics of the tropopause parameters derived from GPS/CHAMP and GPS/SAC-C measurements. J. Geophys. Res., 111, D20110, doi:10.1029/2005JD006827.

    • Search Google Scholar
    • Export Citation
  • Larar, A., W. Smith, D. Zhou, H. Revercomb, J. Taylor, S. Newman, and P. Schlussel, 2010: IASI spectral radiance validation inter-comparisons: Case study assessment from the JAIVEx field campaign. Atmos. Chem. Phys., 10, 411430, doi:10.5194/acp-10-411-2010.

    • Search Google Scholar
    • Export Citation
  • Leroy, S., J. Anderson, J. Dykema, and R. Goody, 2008: Testing climate models using thermal infrared spectra. J. Climate, 21, 18631875, doi:10.1175/2007JCLI2061.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N., B. Wielicki, D. Doelling, G.-L. Smith, D. Keyes, S. Kato, N. Manolo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N., J. Lyman, G. Johnson, R. Allan, D. Doelling, T. Wong, B. Soden, and G. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Newman, S., F. Hilton, J. Taylor, A. Collard, W. Smith, and A. Larar, 2008, Direct radiance validation of IASI—Results from JAIVEx. Tech. Proc. 16th Int. TOVS Study Conf., Angra Dos Reis, Brazil, International TOVS Working Group. [Available online at http://cimss.ssec.wisc.edu/itwg/itsc/itsc16/presentations/-2_08_newman.pdf.]

  • Salby, M., H. Hendon, K. Woodberry, and K. Tanaka, 1991: Analysis of global cloud imagery from multiple satellites. Bull. Amer. Meteor. Soc.,72, 467–480, doi:10.1175/1520-0477(1991)072<0467:AOGCIF>2.0.CO;2.

  • Simeoni, D., and Coauthors, 2004: Design and development of IASI instrument. Infrared Spaceborne Remote Sensing XII, M. Strojnik, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5543), 208–219, doi:10.1117/12.561090.

  • Sinha, A., and J. Harries, 1995: Water vapor and greenhouse trapping: The role of far infrared absorption. Geophys. Res. Lett., 22, 21472150, doi:10.1029/95GL01891.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and M. Webb, 1997: The spectral signature of global warming. Quart. J. Roy. Meteor. Soc., 123, 293307, doi:10.1002/qj.49712353803.

    • Search Google Scholar
    • Export Citation
  • Strabala, K., S. Ackerman, and W. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229, doi:10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., G. Molnar, L. Iredell, and N. Loeb, 2012: Interannual variability of outgoing longwave radiation as observed by AIRS and CERES. J. Geophys. Res., 117, D23107, doi:10.1029/2012JD017997.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B., B. Barkstrom, E. Harrison, R. Lee III, G. Louis Smith, and J. Cooper, 1996: Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B., and Coauthors, 2013: Achieving climate change accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, doi:10.1175/BAMS-D-12-00149.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 517 116 9
PDF Downloads 357 74 7