• Barnett, D. N., S. J. Brown, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2006: Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Climate Dyn., 26, 489511, doi:10.1007/s00382-005-0097-1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., B. Wang, and N.-C. G. Lau, 2005: The global monsoon system: Research and forecast. WMO/TD 1266, TMPR Rep. 70, 542 pp.

  • Chen, C.-A., C. Chou, and C.-T. Chen, 2012: Regional perspective on mechanisms for tropical precipitation frequency and intensity under global warming. J. Climate, 25, 84878501, doi:10.1175/JCLI-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanism of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and C.-W. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, doi:10.1175/JCLI-D-11-00097.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, doi:10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., C.-A. Chen, P.-H. Tan, and K.-T. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate, 25, 32913306, doi:10.1175/JCLI-D-11-00239.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, doi:10.1038/ngeo1744.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1994: Monsoon over China. Kluwer Academic, 419 pp.

  • Ding, Y., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 2154, doi:10.2151/jmsj.85B.21.

  • Duan, A., J. Hu, and Z. Xiao, 2013: The Tibetan Plateau summer monsoon in the CMIP5 simulations. J. Climate, 26, 77477766, doi:10.1175/JCLI-D-12-00685.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., E.-S. Im, E. Coppola, N. S. Diffenbaugh, X. J. Gao, L. Mariotti, and Y. Shi, 2011: Higher hydroclimatic intensity with global warming. J. Climate, 24, 53095324, doi:10.1175/2011JCLI3979.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, J.-J. Luo, H. Murakami, A. Kitoh, and M. Zhao, 2012: Increase of global monsoon area and precipitation under global warming: A robust signal? Geophys. Res. Lett.,39, L06701, doi:10.1029/2012GL051037.

  • Hsu, P.-C., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos., 118, 12471260, doi:10.1002/jgrd.50145.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., and H. Ueda, 2011: Delay of the first transition of Asian summer monsoon under global warming condition. SOLA,7, 081–084, doi:10.2151/sola.2011-021.

  • Jones, C., and L. M. V. Carvalho, 2013: Climate change in the South American monsoon system: Present climate and CMIP5 projections. J. Climate, 26, 66606678, doi:10.1175/JCLI-D-12-00412.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173, doi:10.1175/JCLI3320.1.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., J.-H. Oh, and H. S. Chaudhari, 2007: Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 87, 128, doi:10.1007/s00704-006-0238-4.

    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and O. Arakawa, 2012: Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Climate Dyn., 38, 20552072, doi:10.1007/s00382-011-1234-7.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, doi:10.1007/s00382-012-1564-0.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 2979–2994, doi:10.1175/JCLI-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett.,32, L18719, doi:10.1029/2005GL023680.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., S. Legutke, A. Hense, U. Cubasch, W.-T. Kwon, J.-H. Oh, and U. Schlese, 2006: East Asian climate change in the 21st century as simulated by the coupled climate model ECHO-G under IPCC SRES scenarios. J. Meteor. Soc. Japan, 84, 126, doi:10.2151/jmsj.84.1.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., S. Legutke, A. Hense, U. Cubasch, W.-T. Kwon, J.-H. Oh, and U. Schlese, 2012: Projected changes in Asian summer monsoon in RCP scenarios of CMIP5. Atmos. Oceanic Sci. Lett., 5, 4348.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2005: Impact of increasing CO2 on monthly-to-annual precipitation extremes: Analysis of the CMIP2 experiments. Climate Dyn., 24, 309323, doi:10.1007/s00382-004-0510-1.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. International Geophysical Series, Vol. 15, Academic Press, 296 pp.

  • Riahi, K., A. Gruebler, and N. Nakicenovic, 2007: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecasting Soc. Change, 74, 887935, doi:10.1016/j.techfore.2006.05.026.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, A. Bellucci, M. Zampiery, and A. Navara, 2013: Heavy precipitation events in a warmer climate: Results from CMIP5 models. J. Climate, 26, 79027911, doi:10.1175/JCLI-D-12-00850.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 4651–4668, doi:10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future change in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 76627675, doi:10.1175/JCLI-D-12-00694.1.

    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Biasutti, A. Giannini, S. J. Camargo, and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 73287351, doi:10.1175/JCLI-D-12-00726.1.

    • Search Google Scholar
    • Export Citation
  • Shiu, C.-J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, doi:10.1029/2012GL052762.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, M. Arblaster, and G. A. Meehl, 2006: Going to the extremes. Climatic Change, 79, 185–211, doi:10.1007/s10584-006-9051-4.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and J. M. Slingo, 2009: Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos. Sci. Lett., 10, 152158, doi:10.1002/asl.223.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587595, doi:10.1038/nclimate1495.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Praxis Publishing, 787 pp.

  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett.,33, L06711, doi:10.1029/2005GL025347.

  • Wu, C.-H., and M.-D. Chou, 2012: Upper-tropospheric forcing on late-July monsoon transition in East Asia and western North Pacific. J. Climate, 25, 39293941, doi:10.1175/JCLI-D-11-00343.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., W.-S. Kau, and M.-D. Chou, 2009: Summer monsoon onset in the subtropical western North Pacific. Geophys. Res. Lett.,36, L18810, doi:10.1029/2009GL040168.

  • Wu, C.-H., H. H. Hsu, and M.-D. Chou, 2014: Effect of the Arakan Mountains in the northwestern Indochina Peninsula on the late May Asian monsoon transition. J. Geophys. Res. Atmos., 119, 10 769–10 779, doi:10.1002/2014JD022024.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 6 6 6

Asian Summer Monsoon in CMIP5 Projections: A Link between the Change in Extreme Precipitation and Monsoon Dynamics

View More View Less
  • 1 Research Center for Environmental Changes, Taipei, Taiwan
Restricted access

Abstract

Change in extreme events in climate projections is a major concern. If the frequency of dry events is expected to increase in a warmer climate (thus, the overall number of wet days will decrease), heavy and extreme precipitation are also expected to increase because of a shift of the precipitation spectrum. However, the forecasts exhibit numerous uncertainties.

This study focuses on the Asian region, separated into the following three subregions: the East Asian region, the Indian region, and western North Pacific region, where the summer monsoon can bring heavy rainfall. Particularly emphasized herein is the reliability of the projection, using data from a large ensemble of 30 models from phase 5 of the Coupled Model Intercomparison Project. The scattering of the ensemble enables obtaining an optimal estimate of the uncertainties, and it is used to compute the correlation between projected changes of extreme events and circulation changes.

The results show clear spatial and temporal variations in the confidence of changes, with results being more reliable during the wet season (i.e., the summer monsoon). The ensemble predicts changes in atmospheric circulation with favorable confidence, especially in the low-level moisture flux convergence (MFC). However, the correlation between this mean change and the modification of extreme events is nonsignificant. Also analyzed herein are the correlation and change of MFC exclusively during these events. The horizontal MFC exerts a nonnegligible influence on the change in the intensity of extremes. However, it is mostly the change in vertical circulation and moisture advection that is correlated with the change in frequency and intensity of extreme events.

Corresponding author address: Nicolas Freychet, Academia Sinica, RCEC, Research Center for Information Technology Innovation Building, Room 427, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan. E-mail: nfreychet@gate.sinica.edu.tw

Abstract

Change in extreme events in climate projections is a major concern. If the frequency of dry events is expected to increase in a warmer climate (thus, the overall number of wet days will decrease), heavy and extreme precipitation are also expected to increase because of a shift of the precipitation spectrum. However, the forecasts exhibit numerous uncertainties.

This study focuses on the Asian region, separated into the following three subregions: the East Asian region, the Indian region, and western North Pacific region, where the summer monsoon can bring heavy rainfall. Particularly emphasized herein is the reliability of the projection, using data from a large ensemble of 30 models from phase 5 of the Coupled Model Intercomparison Project. The scattering of the ensemble enables obtaining an optimal estimate of the uncertainties, and it is used to compute the correlation between projected changes of extreme events and circulation changes.

The results show clear spatial and temporal variations in the confidence of changes, with results being more reliable during the wet season (i.e., the summer monsoon). The ensemble predicts changes in atmospheric circulation with favorable confidence, especially in the low-level moisture flux convergence (MFC). However, the correlation between this mean change and the modification of extreme events is nonsignificant. Also analyzed herein are the correlation and change of MFC exclusively during these events. The horizontal MFC exerts a nonnegligible influence on the change in the intensity of extremes. However, it is mostly the change in vertical circulation and moisture advection that is correlated with the change in frequency and intensity of extreme events.

Corresponding author address: Nicolas Freychet, Academia Sinica, RCEC, Research Center for Information Technology Innovation Building, Room 427, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan. E-mail: nfreychet@gate.sinica.edu.tw
Save