Dynamically Downscaled Projections of Lake-Effect Snow in the Great Lakes Basin

Michael Notaro Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Michael Notaro in
Current site
Google Scholar
PubMed
Close
,
Val Bennington Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Val Bennington in
Current site
Google Scholar
PubMed
Close
, and
Steve Vavrus Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Steve Vavrus in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Projected changes in lake-effect snowfall by the mid- and late twenty-first century are explored for the Laurentian Great Lakes basin. Simulations from two state-of-the-art global climate models within phase 5 of the Coupled Model Intercomparison Project (CMIP5) are dynamically downscaled according to the representative concentration pathway 8.5 (RCP8.5). The downscaling is performed using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4) with 25-km grid spacing, interactively coupled to a one-dimensional lake model. Both downscaled models produce atmospheric warming and increased cold-season precipitation. The Great Lakes’ ice cover is projected to dramatically decline and, by the end of the century, become confined to the northern shallow lakeshores during mid-to-late winter. Projected reductions in ice cover and greater dynamically induced wind fetch lead to enhanced lake evaporation and resulting total lake-effect precipitation, although with increased rainfall at the expense of snowfall. A general reduction in the frequency of heavy lake-effect snowstorms is simulated during the twenty-first century, except with increases around Lake Superior by the midcentury when local air temperatures still remain low enough for wintertime precipitation to largely fall in the form of snow. Despite the significant progress made here in elucidating the potential future changes in lake-effect snowstorms across the Great Lakes basin, further research is still needed to downscale a larger ensemble of CMIP5 model simulations, ideally using a higher-resolution, nonhydrostatic regional climate model coupled to a three-dimensional lake model.

Nelson Institute Center for Climatic Research Contribution No. 1208.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00467.s1.

Corresponding author address: Michael Notaro, Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, 1225 West Dayton Street, Madison, WI 53706. E-mail: mnotaro@wisc.edu

Abstract

Projected changes in lake-effect snowfall by the mid- and late twenty-first century are explored for the Laurentian Great Lakes basin. Simulations from two state-of-the-art global climate models within phase 5 of the Coupled Model Intercomparison Project (CMIP5) are dynamically downscaled according to the representative concentration pathway 8.5 (RCP8.5). The downscaling is performed using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4) with 25-km grid spacing, interactively coupled to a one-dimensional lake model. Both downscaled models produce atmospheric warming and increased cold-season precipitation. The Great Lakes’ ice cover is projected to dramatically decline and, by the end of the century, become confined to the northern shallow lakeshores during mid-to-late winter. Projected reductions in ice cover and greater dynamically induced wind fetch lead to enhanced lake evaporation and resulting total lake-effect precipitation, although with increased rainfall at the expense of snowfall. A general reduction in the frequency of heavy lake-effect snowstorms is simulated during the twenty-first century, except with increases around Lake Superior by the midcentury when local air temperatures still remain low enough for wintertime precipitation to largely fall in the form of snow. Despite the significant progress made here in elucidating the potential future changes in lake-effect snowstorms across the Great Lakes basin, further research is still needed to downscale a larger ensemble of CMIP5 model simulations, ideally using a higher-resolution, nonhydrostatic regional climate model coupled to a three-dimensional lake model.

Nelson Institute Center for Climatic Research Contribution No. 1208.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00467.s1.

Corresponding author address: Michael Notaro, Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, 1225 West Dayton Street, Madison, WI 53706. E-mail: mnotaro@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.10 MB)
Save
  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., E. A. Clark, D. P. Lettenmaier, and E. F. Wood, 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538, doi:10.1175/JCLI3604.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., R. W. Arritt, and J. S. Kain, 2007: An alternative mass flux profile in the Kain–Fritsch convective parameterization and its effects in seasonal precipitation. J. Hydrometeor., 8, 11281140, doi:10.1175/JHM624.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, 150 pp.

  • Anderson, E. A., 2006: Snow accumulation and ablation model—SNOW 17. U.S. National Weather Service, Silver Spring, MD, 61 pp.

  • Antic, S., R. Laprise, B. Denis, and R. de Elía, 2004: Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Climate Dyn., 23, 473493, doi:10.1007/s00382-004-0438-5.

    • Search Google Scholar
    • Export Citation
  • Assel, R. A., 1990: An ice-cover climatology for Lake Erie and Lake Superior for the winter seasons 1897–1898 to 1982–1983. Int. J. Climatol., 10, 731748, doi:10.1002/joc.3370100707.

    • Search Google Scholar
    • Export Citation
  • Assel, R. A., 2003: Great Lakes ice cover, first ice, last ice, and ice duration: Winters 1973–2002. NOAA Tech. Memo. GLERL-125, 49 pp. [Available online at http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-125/tm-125.pdf.]

  • Assel, R. A., and D. M. Robertson, 1995: Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records. Limnol. Oceanogr., 40, 165176, doi:10.4319/lo.1995.40.1.0165.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and S. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice–albedo feedback. Geophys. Res. Lett., 34, L06604, doi:10.1029/2006GL029021.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., and Coauthors, 2008: The added value of regional climate model simulations. Climate Models: An Assessment of Strengths and Limitations for User Applications, Climate Change Science Program, Department of Energy, 31–38.

  • Ballentine, R. J., A. J. Stamm, E. E. Chermack, G. P. Byrd, and D. Schleede, 1998: Mesoscale model simulation of the 4–5 January 1995 lake-effect snowstorm. Wea. Forecasting, 13, 893920, doi:10.1175/1520-0434(1998)013<0893:MMSOTJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bard, L., and D. A. R. Kristovich, 2012: Trend reversal in Lake Michigan contribution to snowfall. J. Appl. Meteor. Climatol., 51, 20382046, doi:10.1175/JAMC-D-12-064.1.

    • Search Google Scholar
    • Export Citation
  • Bates, G. T., S. W. Hostetler, and F. Giorgi, 1995: Two-year simulation of the Great Lakes region with a coupled modeling system. Mon. Wea. Rev., 123, 15051522, doi:10.1175/1520-0493(1995)123<1505:TYSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennington, V., G. A. McKinley, N. Kimura, and C. H. Wu, 2010: General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006. J. Geophys. Res., 115, C12015, doi:10.1029/2010JC006261.

    • Search Google Scholar
    • Export Citation
  • Bennington, V., M. Notaro, and K. Holman, 2014: Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. J. Climate, 27, 28862911, doi:10.1175/JCLI-D-13-00110.1.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and D. M. Di Toro, 1990: Effects of climate warming on dissolved oxygen concentrations in Lake Erie. Trans. Amer. Fish. Soc., 119, 210223, doi:10.1577/1548-8659(1990)119<0210:EOCWOD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., M. E. Kirby, H. T. Mullins, and W. P. Patterson, 2003: Increasing Great Lake–effect snowfall during the twentieth century: A regional response to global warming? J. Climate, 16, 35353542, doi:10.1175/1520-0442(2003)016<3535:IGLSDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byerle, L. A., and J. Paegle, 2003: Modulation of the Great Plains low-level jet and moisture transports by orography and large-scale circulations. J. Geophys. Res., 108, 8611, doi:10.1029/2002JD003005.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1979: How a severe winter impacts on individuals. Bull. Amer. Meteor. Soc., 60, 110114, doi:10.1175/1520-0477(1979)060<0110:HASWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, S. J., and T. R. Allsopp, 1988: The potential impacts of a scenario of CO2-induced climatic change on Ontario, Canada. J. Climate, 1, 669681, doi:10.1175/1520-0442(1988)001<0669:TPIOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Committee on Environment and Natural Resources, 2010: Scientific assessment of hypoxia in U.S. coastal waters. Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology, 154 pp. [Available online at http://www.whitehouse.gov/sites/default/files/microsites/ostp/hypoxia-report.pdf.]

  • Denis, B., R. Laprise, D. Caya, and J. Côté, 2002: Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Climate Dyn., 18, 627646, doi:10.1007/s00382-001-0201-0.

    • Search Google Scholar
    • Export Citation
  • Dewey, K. F., 1979: An objective forecast method developed for Lake Ontario induced snowfall systems. J. Appl. Meteor., 18, 787793, doi:10.1175/1520-0450(1979)018<0787:AOFMDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz, R. J., and R. Rosenberg, 2008: Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929, doi:10.1126/science.1156401.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., P. J. Kennedy, A. Henderson-Sellers, and M. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Rep. NCAR/TN-275+STR, 69 pp, doi:10.5065/D6668B58.

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp, doi:10.5065/D67W6959.

  • Eichenlaub, V. L., 1979: Weather and Climate of the Great Lakes Region. University of Notre Dame Press, 335 pp.

  • Elguindi, N., and Coauthors, 2011: Regional Climatic Model RegCM User Manual version 4.1. The Abdus Salam International Centre for Theoretical Physics, 32 pp.

  • Ellis, A. W., and J. J. Johnson, 2004: Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeor., 5, 471486, doi:10.1175/1525-7541(2004)005<0471:HAOSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 11811192, doi:10.1175/2011BAMS3061.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, doi:10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerbush, M. R., D. A. R. Kristovich, and N. F. Laird, 2008: Mesoscale boundary layer and heat fluxes variations over pack ice–covered Lake Erie. J. Appl. Meteor. Climatol., 47, 668682, doi:10.1175/2007JAMC1479.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729, doi:10.3354/cr01018.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: Description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Rep. TN-398+STR, 121 pp.

  • Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming. J. Climate, 25, 77237742, doi:10.1175/JCLI-D-11-00388.1.

    • Search Google Scholar
    • Export Citation
  • Hawley, N., and Coauthors, 2006: Lake Erie hypoxia prompts Canada–U.S. study. Eos, Trans. Amer. Geophys. Union, 87, 313324, doi:10.1029/2006EO320001.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., M. P. Clark, M. Pagowski, G. H. Leavesley, and W. J. Gutowski Jr., 2006: One-way coupling of an atmospheric and a hydrologic model in Colorado. J. Hydrometeor., 7, 569589, doi:10.1175/JHM512.1.

    • Search Google Scholar
    • Export Citation
  • Hill, J. D., 1971: Snow squalls in the lee of Lakes Erie and Ontario. NOAA Tech. Memo. NWS ER-43, 20 pp.

  • Hjelmfelt, M. R., and R. R. Braham Jr., 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, doi:10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holman, K. D., A. D. Gronewold, M. Notaro, and A. Zarrin, 2012: Improving historical precipitation estimates around the Lake Superior watershed. Geophys. Res. Lett., 39, L03405, doi:10.1029/2011GL050468.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., 1991: Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of Lake Lahontan. Climate Dyn., 6, 4348, doi:10.1007/BF00210581.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., and P. J. Bartlein, 1990: Simulation of lake evaporation with application to modeling lake-level variations at Harney-Malheur Lake, Oregon. Water Resour. Res., 26, 26032612, doi:10.1029/WR026i010p02603.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., G. T. Bates, and F. Giorgi, 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98, 50455057, doi:10.1029/92JD02843.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., J. M. Murphy, and M. Noguer, 1995: Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteor. Soc., 121, 14131449, doi:10.1002/qj.49712152610.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and L. DeHaan, 2011: The added value index: A new metric to quantify the added value of regional models. J. Geophys. Res., 116, D11106, doi:10.1029/2011JD015597.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., N. E. Westcott, and D. A. R. Kristovich, 2002: Assessment of potential effects of climate change on heavy lake-effect snowstorms near Lake Erie. J. Great Lakes Res., 28, 521536, doi:10.1016/S0380-1330(02)70603-5.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., L. Ensor, M. Palecki, D. Easterling, D. Robinson, K. G. Hubbard, and K. Redmond, 2009: A new look at lake-effect snowfall trends in the Laurentian Great Lakes using a temporally homogeneous data set. J. Great Lakes Res., 35, 2329, doi:10.1016/j.jglr.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and M. S. Wigmosta, 1999: Potential climate change impacts on mountain watersheds in the Pacific Northwest. J. Amer. Water Resour. Assoc., 35, 14631471, doi:10.1111/j.1752-1688.1999.tb04230.x.

    • Search Google Scholar
    • Export Citation
  • Li, Z., M. J. McCormick, D. Schwab, and S. A. Ruberg, 2009: Lake Michigan vertical temperature data midlake 1991–2007. NOAA Tech. Memo. ERL GLERL-09, 35 pp.

  • Liu, A. Q., and G. W. K. Moore, 2004: Lake-effect snowstorms over southern Ontario, Canada, and their associated synoptic-scale environment. Mon. Wea. Rev., 132, 25952609, doi:10.1175/MWR2796.1.

    • Search Google Scholar
    • Export Citation
  • Martynov, A., K. Sushama, and R. Laprise, 2010: Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models. Boreal Environ. Res., 15, 143164.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., 2003: Issues in the impacts of climate variability and change on agriculture—Applications to the southeastern United States. Climatic Change, 60, 16, doi:10.1023/A:1026077531798.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., F. Giorgi, L. McDaniel, and C. Shields, 2003: Climate scenarios for the southeastern US based on GCM and regional model simulations. Climatic Change, 60, 735, doi:10.1023/A:1026033732707.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J.-K. Schemm, H. Juang, and R. W. Higgins, 2005: Impact of model resolution on the prediction of summer precipitation over the United States and Mexico. J. Climate, 18, 39103927, doi:10.1175/JCLI3513.1.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstricher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, doi:10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norton, D. C., and S. J. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, doi:10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, S. Vavrus, and V. Bennington, 2013a: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, doi:10.1175/JCLI-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., A. Zarrin, S. Vavrus, and V. Bennington, 2013b: Simulation of heavy lake-effect snowstorms across the Great Lakes basin by RegCM4: Synoptic climatology and variability. Mon. Wea. Rev., 141, 19902014, doi:10.1175/MWR-D-11-00369.1.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., D. Lorenz, C. Hoving, and M. Schummer, 2014: Twenty-first-century projections of snowfall and winter severity across central-eastern North America. J. Climate, 27, 6526–6550, doi:10.1175/JCLI-D-13-00520.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105, 29 57929 594, doi:10.1029/2000JD900415.

    • Search Google Scholar
    • Export Citation
  • Patterson, J. C., and P. F. Hamblin, 1988: Thermal simulation of a lake with winter ice cover. Limnol. Oceanogr., 33, 323338, doi:10.4319/lo.1988.33.3.0323.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland, and R. B. Hackett, 1996: Version 2.2 of the global sea ice and sea surface temperature data set, 1903–1994. Hadley Centre Climate Research Tech. Note CRTN74, 35 pp. [Available online at hadobs.metoffice.com/gisst/crtn74.pdf.]

  • Roads, J. O., S.-C. Chen, and M. Kanamitsu, 2003: U.S. regional climate simulations and seasonal forecasts. J. Geophys. Res., 108, 8606, doi:10.1029/2002JD002232.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 1993: Impacts on severe winter weather during December 1989 in the Lake Erie snowbelt. J. Climate, 6, 759767, doi:10.1175/1520-0442(1993)006<0759:IOSWWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwab, D., G. Leshkevich, and G. Muhr, 1992: Satellite measurements of surface water temperature in the Great Lakes: Great Lakes Coastwatch. J. Great Lakes Res., 18, 247258, doi:10.1016/S0380-1330(92)71292-1.

    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and J. M. Fritsch, 1994: Lake-aggregate mesoscale disturbances. Part II: A case study of the effects of regional and synoptic-scale weather systems. Bull. Amer. Meteor. Soc., 75, 17931811, doi:10.1175/1520-0477(1994)075<1793:LAMDPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., J. E. Walsh, W. L. Chapman, and D. Portis, 2006: The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol., 26, 11331147, doi:10.1002/joc.1301.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., M. Notaro, and A. Zarrin, 2013: The role of ice cover in heavy lake-effect snowstorms over the Great Lakes basin as simulated by RegCM4. Mon. Wea. Rev., 141, 148165, doi:10.1175/MWR-D-12-00107.1.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., and N. L. Seaman, 1990: A real-time, mesoscale numerical weather prediction system used for research, teaching, and public service at the Pennsylvania State University. Bull. Amer. Meteor. Soc., 71, 792805, doi:10.1175/1520-0477(1990)071<0792:ARTMNW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, cited 2000: Terrestrial air temperature and precipitation: Monthly and annual time series (1950–1996) (version 1.01). [Available online at http://climate.geog.udel.edu/~climate/html_pages/download.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2082 581 41
PDF Downloads 1531 416 29