Wind- versus Eddy-Forced Regional Sea Level Trends and Variability in the North Pacific Ocean

Bo Qiu Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bo Qiu in
Current site
Google Scholar
PubMed
Close
,
Shuiming Chen Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Shuiming Chen in
Current site
Google Scholar
PubMed
Close
,
Lixin Wu Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
, and
Shinichiro Kida Application Laboratory, JAMSTEC, Yokohama, Japan

Search for other papers by Shinichiro Kida in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional sea level trend and variability in the Pacific Ocean have often been considered to be induced by low-frequency surface wind changes. This study demonstrates that significant sea level trend and variability can also be generated by eddy momentum flux forcing due to time-varying instability of the background oceanic circulation. Compared to the broad gyre-scale wind-forced variability, the eddy-forced sea level changes tend to have subgyre scales and, in the North Pacific Ocean, they are largely confined to the Kuroshio Extension region (30°–40°N, 140°–175°E) and the Subtropical Countercurrent (STCC) region (18°–28°N, 130°–175°E). Using a two-layer primitive equation model driven by the ECMWF wind stress data and the eddy momentum fluxes specified by the AVISO sea surface height anomaly data, the relative importance of the wind- and eddy-forced regional sea level trends in the past two decades is quantified. It is found that the increasing (decreasing) trend south (north) of the Kuroshio Extension is due to strengthening of the regional eddy forcing over the past two decades. On the other hand, the decreasing (increasing) sea level trend south (north) of the STCC is caused by the decadal weakening of the regional eddy momentum flux forcing. These decadal eddy momentum flux changes are caused by the background Kuroshio Extension and STCC changes in connection with the Pacific decadal oscillation (PDO) wind pattern shifting from a positive to a negative phase over the past two decades.

Corresponding author address: Dr. Bo Qiu, Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822. E-mail: bo@soest.hawaii.edu

Abstract

Regional sea level trend and variability in the Pacific Ocean have often been considered to be induced by low-frequency surface wind changes. This study demonstrates that significant sea level trend and variability can also be generated by eddy momentum flux forcing due to time-varying instability of the background oceanic circulation. Compared to the broad gyre-scale wind-forced variability, the eddy-forced sea level changes tend to have subgyre scales and, in the North Pacific Ocean, they are largely confined to the Kuroshio Extension region (30°–40°N, 140°–175°E) and the Subtropical Countercurrent (STCC) region (18°–28°N, 130°–175°E). Using a two-layer primitive equation model driven by the ECMWF wind stress data and the eddy momentum fluxes specified by the AVISO sea surface height anomaly data, the relative importance of the wind- and eddy-forced regional sea level trends in the past two decades is quantified. It is found that the increasing (decreasing) trend south (north) of the Kuroshio Extension is due to strengthening of the regional eddy forcing over the past two decades. On the other hand, the decreasing (increasing) sea level trend south (north) of the STCC is caused by the decadal weakening of the regional eddy momentum flux forcing. These decadal eddy momentum flux changes are caused by the background Kuroshio Extension and STCC changes in connection with the Pacific decadal oscillation (PDO) wind pattern shifting from a positive to a negative phase over the past two decades.

Corresponding author address: Dr. Bo Qiu, Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822. E-mail: bo@soest.hawaii.edu
Save
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

  • Bromirski, P. D., A. J. Miller, R. E. Flick, and G. Auad, 2011: Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. J. Geophys. Res., 116, C07005, doi:10.1029/2010JC006759.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and W. Llovel, 2010: Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173, doi:10.1146/annurev-marine-120308-081105.

    • Search Google Scholar
    • Export Citation
  • Ceballos, L., E. Di Lorenzo, C. D. Hoyos, N. Schneider, and B. Taguchi, 2009: North Pacific Gyre oscillation synchronizes climate variability in the eastern and western boundary current systems. J. Climate, 22, 51635174, doi:10.1175/2009JCLI2848.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stoker et al., Eds., Cambridge University Press, 1137–1216.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and G. S. E. Lagerloef, 2004: Wind-driven interannual variability over the northeast Pacific Ocean. Deep-Sea Res., 51, 21052121, doi:10.1016/j.dsr.2004.08.004.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, and T. Lee, 2010: Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys. Res. Lett., 37, L09606, doi:10.1029/2010GL042796.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Zhai, M. Claus, L. Czeschel, and W. Rath, 2010a: Transport driven by eddy momentum fluxes in the Gulf Stream Extension region. Geophys. Res. Lett., 37, L24401, doi:10.1029/2010GL045473.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Zhai, J.-D. Kolmann, and L. Czeschel, 2010b: Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio extensions as revealed by satellite data. Ocean Dyn., 60, 617628, doi:10.1007/s10236-010-0282-6.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 1997: Stable split time stepping schemes for large-scale ocean modeling. J. Comput. Phys., 135, 5465, doi:10.1006/jcph.1997.5734.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz, P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101, 941976, doi:10.1029/95JC01674.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., N. G. Hogg, and P. Malanotte-Rizzoli, 1996: Recirculation gyres forced by a beta-plane jet. J. Phys. Oceanogr., 26, 492504, doi:10.1175/1520-0485(1996)026<0492:RGFBAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and Coauthors, 2009: The Kuroshio Extension and its recirculation gyres. Deep-Sea Res., 56, 20882099, doi:10.1016/j.dsr.2009.08.006.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95, 51835217, doi:10.1029/JC095iC04p05183.

    • Search Google Scholar
    • Export Citation
  • Kobashi, F., and H. Kawamura, 2002: Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J. Geophys. Res., 107, C03185, doi:10.1029/2001JC001225.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2008: Decadal sea level changes in the 50-year GECCO ocean synthesis. J. Climate, 21, 18761890, doi:10.1175/2007JCLI2081.1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and M. E. Maltrud, 2011: Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett., 38, L21605, doi:10.1029/2011GL049576.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and I. Ishikawa, 2010: Meridional shift of the Kuroshio Extension induced by response of recirculation gyre to decadal wind variations. Deep-Sea Res. II, 57, 11111126, doi:10.1016/j.dsr2.2009.12.002.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Penduff, T., and Coauthors, 2011: Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 56525670, doi:10.1175/JCLI-D-11-00077.1.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., 2014: Kuroshio Extension bimodality and the North Pacific Oscillation: A case of intrinsic variability paced by external forcing. J. Climate, 27, 448454, doi:10.1175/JCLI-D-13-00306.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, doi:10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32, 353375, doi:10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482, doi:10.1175/2459.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal timescales. J. Phys. Oceanogr., 35, 20902103, doi:10.1175/JPO2807.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010a: Eddy–mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res. II, 57, 10981110, doi:10.1016/j.dsr2.2008.11.036.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010b: Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40, 25252538, doi:10.1175/2010JPO4462.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2011: Effect of decadal Kuroshio Extension jet and eddy variability on the modification of North Pacific Intermediate Water. J. Phys. Oceanogr., 41, 503515, doi:10.1175/2010JPO4575.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2012: Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr., 42, 193206, doi:10.1175/JPO-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2013: Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre. J. Phys. Oceanogr., 43, 344358, doi:10.1175/JPO-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and P. Hacker, 2004: Synoptic-scale air–sea flux forcing in the western North Pacific: Observations and their impact on SST and the mixed layer. J. Phys. Oceanogr., 34, 21482159, doi:10.1175/1520-0485(2004)034<2148:SAFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Hacker, N. Hogg, S. Jayne, and H. Sasaki, 2008: The Kuroshio Extension northern recirculation gyre: Profiling float measurements and forcing mechanism. J. Phys. Oceanogr., 38, 17641779, doi:10.1175/2008JPO3921.1.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289325, doi:10.1016/0377-0265(79)90015-0.

    • Search Google Scholar
    • Export Citation
  • Rio, M. H., S. Guinehut, and G. Larnicol, 2011: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in-situ measurements. J. Geophys. Res., 116, C07018, doi:10.1029/2010JC006505.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, and Y. Miura, 2014: Decadal sea-level variability along the coast of Japan in response to ocean circulation changes. J. Geophys. Res., 119, 266275, doi:10.1002/2013JC009327.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, doi:10.1146/annurev-marine-121211-172406.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377, doi:10.1175/JCLI4142.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., B. Qiu, M. Nonaka, H. Sasaki, S.-P. Xie, and N. Schneider, 2010: Decadal variability of the Kuroshio Extension: Mesoscale eddies and recirculation. Ocean Dyn., 60, 673691, doi:10.1007/s10236-010-0295-1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. McGregor, and F.-F. Jin, 2010: Wind effects on the past and future regional sea level trends in the southern Indo-Pacific. J. Climate, 23, 44294437, doi:10.1175/2010JCLI3519.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., and S. R. Jayne, 2011: Eddy–mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, doi:10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., N. G. Hogg, and S. R. Jayne, 2011: Eddy–mean flow interaction in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208, doi:10.1175/2010JPO4564.1.

    • Search Google Scholar
    • Export Citation
  • Yasuda, T., and K. Sakurai, 2006: Interdecadal variability of the sea surface height around Japan. Geophys. Res. Lett., 33, L01605, doi:10.1029/2005GL024920.

    • Search Google Scholar
    • Export Citation
  • Yoshida, S., B. Qiu, and P. Hacker, 2011: Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: Observations and connection to the Pacific decadal oscillation. J. Geophys. Res., 116, C12009, doi:10.1029/2011JC007286.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 715 233 11
PDF Downloads 531 153 11