• Andrews, T., and M. A. Ringer, 2014: Cloud feedbacks, rapid adjustments, and the forcing–response relationship in a transient CO2 reversibility scenario. J. Climate, 27, 17991818, doi:10.1175/JCLI-D-13-00421.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012a: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., and Coauthors, 2012b: Sensitivity of an Earth system climate model to idealized radiative forcing. Geophys. Res. Lett., 39, L10702, doi:10.1029/2012GL051942.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, doi:10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst., 5, 676691, doi:10.1002/jame.20041.

    • Search Google Scholar
    • Export Citation
  • Bouttes, N., J. M. Gregory, and J. A. Lowe, 2013: The reversibility of sea level rise. J. Climate, 26, 25022513, doi:10.1175/JCLI-D-12-00285.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and Coauthors, 1979: Carbon dioxide and climate: A scientific assessment. National Academy of Sciences Rep., 22 pp.

  • Church, J. A., and Coauthors, 2011: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Colman, R., and B. McAvaney, 2009: Climate feedbacks under a very broad range of forcing. Geophys. Res. Lett., 36, L01702, doi:10.1029/2008GL036268.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499, doi:10.1175/2008JCLI2596.1.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 1139–1150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., M. Winton, and J. L. Sarmiento, 2014: Continued global warming after CO2 emissions stoppage. Nat. Climate Change, 4, 4044, doi:10.1038/nclimate2060.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, G. Bellon, A. Voldoire, D. J. L. Olivié, and S. Tytéca, 2013: Transient climate response in a two-layer energy-balance model. Part II: Representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J. Climate, 26, 18591876, doi:10.1175/JCLI-D-12-00196.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. J. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, doi:10.1175/2007JCLI1834.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, doi:10.1175/2009JCLI3466.1.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7, 559565, doi:10.1175/1520-0442(1994)007<0559:OTONCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., J.-S. von Storch, and J. Marotzke, 2013: Deep-ocean heat uptake and equilibrium climate response. Climate Dyn., 40, 1071–1086, doi:10.1007/s00382-012-1350-z.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and J.-Y. Yu, 2014: Linking centennial surface warming patterns in the equatorial Pacific to the relative strengths of the Walker and Hadley circulations. J. Atmos. Sci., 71, 34543464, doi:10.1175/JAS-D-14-0028.1.

    • Search Google Scholar
    • Export Citation
  • Meraner, K., T. Mauritsen, and A. Voigt, 2013: Robust increase in equilibrium climate sensitivity under global warming. Geophys. Res. Lett., 40, 59445948, doi:10.1002/2013GL058118.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1995: Transient response of the Hadley Centre coupled ocean–atmosphere model to increasing carbon dioxide. Part III: Analysis of global-mean response using simple models. J. Climate, 8, 496514, doi:10.1175/1520-0442(1995)008<0496:TROTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, doi:10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688, doi:10.1029/2000GL011373.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and P. M. D. Forster, 1999: The effect of human activity on radiative forcing of climate change: A review of recent developments. Global Planet. Change, 20, 205225, doi:10.1016/S0921-8181(99)00017-X.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, doi:10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb, 2007: Estimating shortwave radiative forcing and response in climate models. J. Climate, 20, 25302543, doi:10.1175/JCLI4143.1.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., W. J. Ingram, and J. M. Gregory, 2008: Time variation of effective climate sensitivity in GCMs. J. Climate, 21, 50765090, doi:10.1175/2008JCLI2371.1.

    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 23332344, doi:10.1175/2009JCLI3139.1.

    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, doi:10.1175/JCLI-D-12-00296.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat. Geosci., 5, 313317, doi:10.1038/ngeo1438.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate,26, 5007–5027, doi:10.1175/JCLI-D-12-00555.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 60
PDF Downloads 39 39 39

The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models

View More View Less
  • 1 Met Office Hadley Centre, Exeter, United Kingdom
  • | 2 Met Office Hadley Centre, Exeter, and NCAS-Climate, University of Reading, Reading, United Kingdom
  • | 3 Met Office Hadley Centre, Exeter, United Kingdom
Restricted access

Abstract

Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of the Coupled Model Intercomparison Project (CMIP5) atmosphere–ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined, the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective climate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics (30°N–30°S). An important region involved is the tropical Pacific, where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea surface temperatures and sea ice prescribed from its AOGCM counterpart, each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. It is also demonstrated that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but nonzero change in net radiation at the top of the atmosphere (~−0.5 W m−2 in HadCM3).

Corresponding author address: Timothy Andrews, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: timothy.andrews@metoffice.gov.uk

Abstract

Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of the Coupled Model Intercomparison Project (CMIP5) atmosphere–ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined, the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective climate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics (30°N–30°S). An important region involved is the tropical Pacific, where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea surface temperatures and sea ice prescribed from its AOGCM counterpart, each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. It is also demonstrated that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but nonzero change in net radiation at the top of the atmosphere (~−0.5 W m−2 in HadCM3).

Corresponding author address: Timothy Andrews, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: timothy.andrews@metoffice.gov.uk
Save