Regional Variations in Potential Plant Habitat Changes in Response to Multiple Global Warming Scenarios

Chang-Eui Park School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Chang-Eui Park in
Current site
Google Scholar
PubMed
Close
,
Su-Jong Jeong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Su-Jong Jeong in
Current site
Google Scholar
PubMed
Close
,
Chang-Hoi Ho School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Chang-Hoi Ho in
Current site
Google Scholar
PubMed
Close
, and
Jinwon Kim Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jinwon Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the impacts of global warming on the timing of plant habitat changes in the twenty-first century using climate scenarios from multiple global climate models (GCMs). The plant habitat changes are predicted by driving the bioclimate rule in a dynamic global vegetation model using the climate projections from 16 coupled GCMs. The timing of plant habitat changes is estimated by the first occurrence of specified fractional changes (10%, 20%, and 30%). All future projections are categorized into three groups by the magnitude of the projected global-mean land surface temperature changes: low (<2.5 K), medium (2.5–3.5 K), and high (>3.5 K) warming. During the course of the twenty-first century, dominant plant habitat changes are projected in ecologically transitional (i.e., from tropical to temperate and temperate to boreal) regions. The timing of plant habitat changes varies substantially according to regions. In the low-warming group, habitat changes of 10% in southern Africa occur in 2028, earlier than in the Americas by more than 70 yr. Differences in the timing between regions increase with the increase in warming and fractional threshold. In the subtropics, fast plant habitat changes are projected for the Asia and Africa regions, where countries of relatively small gross domestic product (GDP) per capita are concentrated. Ecosystems in these regions will be more vulnerable to global warming, because countries of low economic power lack the capability to deal with the warming-induced habitat changes. Thus, it is important to establish international collaboration via which developed countries provide assistance to mitigate the impacts of global warming.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00753.s1.

Corresponding author address: Su-Jong Jeong, Jet Propulsion Laboratory, M/S 233-305D, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: Su-Jong.Jeong@jpl.nasa.gov

Abstract

This study examines the impacts of global warming on the timing of plant habitat changes in the twenty-first century using climate scenarios from multiple global climate models (GCMs). The plant habitat changes are predicted by driving the bioclimate rule in a dynamic global vegetation model using the climate projections from 16 coupled GCMs. The timing of plant habitat changes is estimated by the first occurrence of specified fractional changes (10%, 20%, and 30%). All future projections are categorized into three groups by the magnitude of the projected global-mean land surface temperature changes: low (<2.5 K), medium (2.5–3.5 K), and high (>3.5 K) warming. During the course of the twenty-first century, dominant plant habitat changes are projected in ecologically transitional (i.e., from tropical to temperate and temperate to boreal) regions. The timing of plant habitat changes varies substantially according to regions. In the low-warming group, habitat changes of 10% in southern Africa occur in 2028, earlier than in the Americas by more than 70 yr. Differences in the timing between regions increase with the increase in warming and fractional threshold. In the subtropics, fast plant habitat changes are projected for the Asia and Africa regions, where countries of relatively small gross domestic product (GDP) per capita are concentrated. Ecosystems in these regions will be more vulnerable to global warming, because countries of low economic power lack the capability to deal with the warming-induced habitat changes. Thus, it is important to establish international collaboration via which developed countries provide assistance to mitigate the impacts of global warming.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00753.s1.

Corresponding author address: Su-Jong Jeong, Jet Propulsion Laboratory, M/S 233-305D, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: Su-Jong.Jeong@jpl.nasa.gov

Supplementary Materials

    • Supplemental Materials (DOC 1.82 MB)
Save
  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adger, N., and Coauthors, 2007a: Summery for policymakers. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 7–22. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-spm.pdf.]

  • Adger, N., and Coauthors, 2007b: Assessment of adaptation practices, options, constraints and capacity. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 717–743. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter17.pdf.]

  • Alo, C. A., and G. L. Wang, 2008: Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J. Geophys. Res.,113, G01004, doi:10.1029/2007JG000528.

    • Search Google Scholar
    • Export Citation
  • Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp, 2012: Impacts of climate change on the future of biodiversity. Ecol. Lett., 15, 365377, doi:10.1111/j.1461-0248.2011.01736.x.

    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2005: Arctic Climate Impact Assessment.Cambridge University Press, 1042 pp.

  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Bounoua, L., F. G. Hall, P. J. Sellers, A. Kumar, G. J. Collatz, C. J. Tucker, and M. L. Imhoff, 2010: Quantifying the negative feedback of vegetation to greenhouse warming: A modeling approach. Geophys. Res. Lett., 37, L23701, doi:10.1029/2010GL045338.

    • Search Google Scholar
    • Export Citation
  • Brown, J. H., T. E. Brown, and M. V. Lomolino, 1998: Biogeography. 2nd ed. Sinauer Associates, 624 pp.

  • Cardinale, B. J., and Coauthors, 2012: Biodiversity loss and its impact on humanity. Nature, 486, 5967, doi:10.1038/nature11148.

  • Chan, K. M. A., L. Hoshizaki, and B. Klinkenberg, 2011: Ecosystem services in conservation planning: Targeted benefits vs. co-benefits or costs? PLoS ONE, 6, e24378, doi:10.1371/journal.pone.0024378.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., III, and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657660, doi:10.1126/science.1117368.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7, 357374, doi:10.1046/j.1365-2486.2001.00383.x.

    • Search Google Scholar
    • Export Citation
  • Das, S., and J. R. Vincent, 2009: Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. USA,106, 7357–7360, doi:10.1073/pnas.0810440106.

  • Dillon, M. E., G. Wang, and R. B. Huey, 2010: Global metabolic impacts of recent climate warming. Nature, 467, 704706, doi:10.1038/nature09407.

    • Search Google Scholar
    • Export Citation
  • Ezcurra, E., Ed., 2009: Global Deserts Outlook. United Nations Environment Programme, 148 pp.

  • Fischlin, A., and Coauthors, 2007: Ecosystems, their properties, goods and services. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 211–272. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter4.pdf.]

  • Foley, J. A., and Coauthors, 2011: Solutions for a cultivated planet. Nature, 478, 337342, doi:10.1038/nature10452.

  • Forbes, B. C., M. M. Fauria, and P. Zetterberg, 2010: Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol., 16, 15421554, doi:10.1111/j.1365-2486.2009.02047.x.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, doi:10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Giam, X., C. J. A. Bradshaw, H. T. W. Tan, and N. S. Sodhi, 2010: Future habitat loss and the conservation of plant biodiversity. Biol. Conserv., 143, 15941602, doi:10.1016/j.biocon.2010.04.019.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, P., R. P. Neilson, J. M. Lenihan, and R. J. Drapek, 2010: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecol. Biogeogr., 19, 755768, doi:10.1111/j.1466-8238.2010.00558.x.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hartley, I. P., M. H. Garnett, M. Sommerkorn, D. W. Hopkins, B. J. Fletcher, V. L. Sloan, G. K. Phoenix, and P. A. Wookey, 2012: A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Climate Change, 2, 875879, doi:10.1038/nclimate1575.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. B., and Coauthors, 2008: Protecting climate with forests. Environ. Res. Lett.,3, doi:10.1088/1748-9326/3/4/044006.

  • Jeong, S.-J., C.-H. Ho, K.-Y. Kim, J. Kim, J.-H. Jeong, and T.-W. Park, 2010: Potential impact of vegetation feedback on European heat waves in a 2 × CO2 climate. Climatic Change, 99, 625635, doi:10.1007/s10584-010-9808-7.

    • Search Google Scholar
    • Export Citation
  • Jeong, S.-J., C.-H. Ho, M. E. Brown, J.-S. Kug, and S. Piao, 2011a: Browning in desert boundaries in Asia in recent decades. J. Geophys. Res., 116, D02103, doi:10.1029/2010JD014633.

    • Search Google Scholar
    • Export Citation
  • Jeong, S.-J., C.-H. Ho, T.-W. Park, J. Kim, and S. Levis, 2011b: Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Climate Dyn., 37, 821833, doi:10.1007/s00382-010-0827-x.

    • Search Google Scholar
    • Export Citation
  • Jia, G. J., H. E. Epstein, and D. A. Walker, 2009: Vegetation greening in the Canadian arctic related to decadal warming. J. Environ. Monit., 11, 22312238, doi:10.1039/b911677j.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., Q. Zhuang, S. Shaphoff, S. Sitch, A. Sokolov, D. Kicklighter, and J. Melillo, 2012: Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model. Ecol. Evol., 2, 593614, doi:10.1002/ece3.85.

    • Search Google Scholar
    • Export Citation
  • Joshi, M., E. Hawkins, R. Sutton, J. Lowe, and D. Frame, 2011: Projections of when temperature change will exceed 2°C above pre-industrial levels. Nat. Climate Change, 1, 407412, doi:10.1038/nclimate1261.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., and P. Meyfroidt, 2011: Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA, 108, 34653472, doi:10.1073/pnas.1100480108.

    • Search Google Scholar
    • Export Citation
  • Lucht, W., S. Schaphoff, T. Erbrecht, U. Heyder, and W. Cramer, 2006: Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manage., 1, 6, doi:10.1186/1750-0680-1-6.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10.pdf.]

  • Meinshausen, M., N. Meinshausen, W. Hare, S. C. B. Raper, K. Frieler, R. Knutti, D. J. Frame, and M. R. Allen 2009: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458, 11581162, doi:10.1038/nature08017.

    • Search Google Scholar
    • Export Citation
  • Morin, X., and W. Thuiller, 2009: Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 13011313, doi:10.1890/08-0134.1.

    • Search Google Scholar
    • Export Citation
  • Naidoo, R., and T. H. Ricketts, 2006: Mapping the economic costs and benefits of conservation. PLoS Biol., 4, e360, doi:10.1371/journal.pbio.0040360.

    • Search Google Scholar
    • Export Citation
  • Naidoo, R., A. Balmford, P. J. Ferraro, S. Polasky, T. H. Ricketts, and M. Rouget, 2006: Integrating economic costs into conservation planning. Trends Ecol. Evol., 21, 681687, doi:10.1016/j.tree.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Nilsson, M., and A. Persson, 2012: Can Earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection. Ecol. Econ., 75, 6171, doi:10.1016/j.ecolecon.2011.12.015.

    • Search Google Scholar
    • Export Citation
  • Park, C.-E., C.-H. Ho, S.-J. Jeong, J. Kim, and S. Feng, 2012: The potential of vegetation feedback to alleviate climate aridity over the United States associated with a 2×CO2 climate condition. Climate Dyn., 38, 14891500, doi:10.1007/s00382-011-1150-x.

    • Search Google Scholar
    • Export Citation
  • Parmesan, C., and G. Yohe, 2003: A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 3742, doi:10.1038/nature01286.

    • Search Google Scholar
    • Export Citation
  • Pearson, R. G., and T. P. Dawson, 2003: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecol. Biogeogr., 12, 361374, doi:10.1046/j.1466-822X.2003.00042.x.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and Coauthors, 2007: Assessment of observed changes and responses in natural and managed systems. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 79–131. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter1.pdf.]

  • Rosenzweig, C., and Coauthors, 2008: Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353357, doi:10.1038/nature06937.

    • Search Google Scholar
    • Export Citation
  • Sala, O., and Coauthors, 2005: Biodiversity across scenarios. Ecosystems and Human Well-Being: Scenarios. S. R. Carpenter et al., Eds., Vol. II, Millennium Ecosystem Assessment, Island Press, 375–408. [Available online at http://www.millenniumassessment.org/documents/document.334.aspx.pdf.]

  • Scholze, M., W. Knorr, N. W. Arnell, and I. C. Prentice, 2006: A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA, 103, 13 11613 120, doi:10.1073/pnas.0601816103.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185, doi:10.1046/j.1365-2486.2003.00569.x.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biol., 14, 20152039, doi:10.1111/j.1365-2486.2008.01626.x.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-ts.pdf.]

  • Sturm, M., C. Racine, and K. Tape, 2001: Climate change: Increasing shrub abundance in the Arctic. Nature, 411, 546547, doi:10.1038/35079180.

    • Search Google Scholar
    • Export Citation
  • The World Bank, cited 2013: Gross domestic production per capita 2013. [Available online at http://databank.worldbank.org/data/views/reports/tableview.aspx.]

  • Thomas, C. D., and Coauthors, 2004: Extinction risk from climate change. Nature, 427, 145148, doi:10.1038/nature02121.

  • Turner, M. G., R. H. Gardner, and R. V. O’Neill, 2001: Landscape Ecology in Theory and Practice, Springer-Verlag, 406 pp.

  • Turner, W. R., M. Oppenheimer, and D. S. Wilcove, 2009: A force to fight global warming. Nature, 462, 278279, doi:10.1038/462278a.

  • UNFCCC, 2009: Report of the conference of the parties on its fifteenth session, and addendum part two: Decisions adopted by the conference of the parties. 15th. Conf. of the Parties, Copenhagen, Denmark, United Nations Framework Convention on Climate Change, 43 pp. [Available online at http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf.]

  • Williams, J. W., S. T. Jackson, and J. E. Kutzbacht, 2007: Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA, 104, 57385742, doi:10.1073/pnas.0606292104.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and Coauthors, 2013: Temperature and vegetation seasonality diminishment over northern lands. Nat. Climate Change,3, 581–586, doi:10.1038/nclimate1836.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 462 138 21
PDF Downloads 300 87 14