A New Metric for Indian Monsoon Rainfall Extremes

Tackseung Jun Barnard College, Columbia University, New York, New York

Search for other papers by Tackseung Jun in
Current site
Google Scholar
PubMed
Close
,
Lalith Munasinghe Barnard College, Columbia University, New York, New York

Search for other papers by Lalith Munasinghe in
Current site
Google Scholar
PubMed
Close
, and
David H. Rind NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by David H. Rind in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme monsoon rainfall in India has disastrous consequences, including significant socioeconomic impacts. However, little is known about the overall trends and climate factors associated with extreme rainfall because rainfall greatly varies across India and because few appropriate methods are available to measure extreme rainfall in the context of such heterogeneity. To provide a comprehensive assessment of extreme monsoon rainfall, the authors developed a metric using record rainfall data to measure the changes in the likelihood of extreme high and extreme low rainfall over time; this metric is independent of the characteristics of the underlying rainfall distributions. Hence, the metric is ideally suited to aggregate extreme rainfall information across heterogeneous regions covering India. The authors found that from 1930 to 2013, the likelihood of extreme high and extreme low rainfall increases 2-fold and 4-fold, respectively. These overall trend increases are driven by anomalous increases, particularly in the early 2000s; the likelihood of extreme high and extreme low rainfall increases 5-fold and 18-fold in 2005 and 2002, respectively. These findings imply a broadening of the underlying monsoon rainfall distribution over the past century. The authors also show that the time patterns of the likelihood of extreme rainfall in recent decades are correlated with El Niño–Southern Oscillation, especially when it is in the same phase with the Pacific decadal oscillation and Indian Ocean dipole.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00764.s1.

Corresponding author address: T. Jun, Dept. of Economics, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027. E-mail: tj32gm@gmail.com

Abstract

Extreme monsoon rainfall in India has disastrous consequences, including significant socioeconomic impacts. However, little is known about the overall trends and climate factors associated with extreme rainfall because rainfall greatly varies across India and because few appropriate methods are available to measure extreme rainfall in the context of such heterogeneity. To provide a comprehensive assessment of extreme monsoon rainfall, the authors developed a metric using record rainfall data to measure the changes in the likelihood of extreme high and extreme low rainfall over time; this metric is independent of the characteristics of the underlying rainfall distributions. Hence, the metric is ideally suited to aggregate extreme rainfall information across heterogeneous regions covering India. The authors found that from 1930 to 2013, the likelihood of extreme high and extreme low rainfall increases 2-fold and 4-fold, respectively. These overall trend increases are driven by anomalous increases, particularly in the early 2000s; the likelihood of extreme high and extreme low rainfall increases 5-fold and 18-fold in 2005 and 2002, respectively. These findings imply a broadening of the underlying monsoon rainfall distribution over the past century. The authors also show that the time patterns of the likelihood of extreme rainfall in recent decades are correlated with El Niño–Southern Oscillation, especially when it is in the same phase with the Pacific decadal oscillation and Indian Ocean dipole.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00764.s1.

Corresponding author address: T. Jun, Dept. of Economics, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027. E-mail: tj32gm@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 553.74 KB)
Save
  • Ajayamohan, R. S., and S. A. Rao, 2008: Indian Ocean Dipole modulates the number of extreme rainfall events over India in a warming environment. J. Meteor. Soc. Japan, 86, 245252, doi:10.2151/jmsj.86.245.

    • Search Google Scholar
    • Export Citation
  • Anderson, A., and A. B. Kostinski, 2010: Reversible record breaking and variability: Temperature distributions across the globe. J. Appl. Meteor. Climatol., 49, 16811691, doi:10.1175/2010JAMC2407.1.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. M. Slingo, K. R. Sperber, and K. Hodges, 1999: The mean evolution and variability of the Asian summer monsoon: Comparison of ECMWF and NCEP–NCAR reanalyses. Mon. Wea. Rev., 127, 11571186, doi:10.1175/1520-0493(1999)127<1157:TMEAVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Hafner, K. P. Sooraj, and P. Pillai, 2013: Global warming shifts the monsoon circulation, drying South Asia. J. Climate, 26, 27012718, doi:10.1175/JCLI-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, doi:10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baxter, M., and R. G. King, 1999: Measuring business cycles: Approximate band-pass filters for economic time series. Rev. Econ. Stat., 81, 575593, doi:10.1162/003465399558454.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2003: How often can we expect a record event? Climate Res., 25, 313, doi:10.3354/cr025003.

  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over South China. Geophys. Res. Lett., 32, L08810, doi:10.1029/2004GL022015.

    • Search Google Scholar
    • Export Citation
  • Chandler, K. N., 1952: The distribution and frequency of record values. J. Roy. Stat. Soc., 14B, 220228.

  • Clark, C. O., J. E. Cole, and P. J. Webster, 2000: Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability. J. Climate, 13, 25032519, doi:10.1175/1520-0442(2000)013<2503:IOSAIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Copsey, D., R. Sutton, and J. R. Knight, 2006: Recent trends in sea level pressure in the Indian Ocean region. Geophys. Res. Lett., 33, L19712, doi:10.1029/2006GL027175.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. M. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the 20th and 21st centuries simulated by the NCAR Climate System Model. J. Climate, 14, 485519, doi:10.1175/1520-0442(2001)014<0485:COTTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, F., M. E. Mann, and C. M. Ammann, 2009: Understanding changes in the Asian summer monsoon over the past millennium: Insights from a long-term coupled model simulation. J. Climate, 22, 17361748, doi:10.1175/2008JCLI2336.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., 2004: A stratified diagnosis of the Indian monsoon–Eurasian snow cover relationship. J. Climate, 17, 11101122, doi:10.1175/1520-0442(2004)017<1110:ASDOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and K. R. Kurma, 2006: The Asian monsoon—Agriculture and economy. The Asian Monsoon, B. Wang, Ed., Springer-Verlag, 651–683.

  • Ghosh, S., V. Luniya, and A. Gupta, 2009: Trend analysis of Indian summer monsoon rainfall at different spatial scales. Atmos. Sci. Lett., 10, 285290, doi:10.1002/asl.235.

    • Search Google Scholar
    • Export Citation
  • Ghosh, S., D. Das, S.-C. Kao, and A. R. Ganguly, 2012: Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat. Climate Change, 2, 8691, doi:10.1038/nclimate1327.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445, doi:10.1126/science.1132027.

    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., O. P. Sreejith, and P. A. Menon, 2011: Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci., 120, 359373, doi:10.1007/s12040-011-0082-5.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hori, M. E., and T. Yasunari, 2003: NAO impact towards the springtime snow disappearance in the western Eurasian continent. Geophys. Res. Lett., 30, 1977, doi:10.1029/2003GL018103.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, C. K. B., U. Lall, and H.-H. Kwon, 2009: Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Climate, 22, 47374746, doi:10.1175/2009JCLI2896.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 23972410, doi:10.1007/s00382-013-1856-z.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, doi:10.1126/science.284.5423.2156.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. N., M. Rajeevan, D. S. Pai, A. K. Srivastava, and B. Preethi, 2013: On the observed variability of monsoon droughts over India. Wea. Climate Extremes, 1, 4250, doi:10.1016/j.wace.2013.07.006.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinez-Casasnovas, J. A., M. C. Ramos, and M. Ribes-Dasi, 2002: Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma, 105, 125140, doi:10.1016/S0016-7061(01)00096-9.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, doi:10.1029/2009GL040736.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, doi:10.1038/nature09763.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., L. Sridhar, M. Rajeevan, O. P. Sreejith, N. S. Satbhai, and B. Mukhopadhyay, 2014: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65, 118.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., and H. Douville, 2010: Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations. Climate Dyn., 34, 643660, doi:10.1007/s00382-009-0565-0.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., H. S. Chaudhari, S. K. Saha, A. Dhakate, R. K. Yadav, K. Salunke, S. Mahapatra, and S. A. Rao, 2012: ENSO, IOD and Indian summer monsoon in NCEP climate forecast system. Climate Dyn., 39, 21432165, doi:10.1007/s00382-012-1349-5.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, J. D. Kale, and B. Lal, 2006: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr. Sci., 91, 296306. [Available online at http://www.iisc.ernet.in/currsci/aug102006/296.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, and A. K. Jaswal, 2008: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 35, L18707, doi:10.1029/2008GL035143.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rényi, A., 1962: Theorie des éléments saillants d’une suite d’observations. Colloquium on Combinatorial Methods in Probability Theory, Aarhus, Denmark, Matematisk Institut, 104–117.

  • Robock, A., M. Mu, K. Vinnikov, and D. Robinson, 2003: Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res., 108, 4131, doi:10.1029/2002JD002286.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., P. M. Inness, and J. M. Slingo, 2007: The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: Mean response and interannual variability. Quart. J. Roy. Meteor. Soc., 133, 11431157, doi:10.1002/qj.82.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and J. C. Rogers, 1978: The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296310, doi:10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Pillip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, doi:10.5194/os-1-81-2005.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, M. C. K., 1975: On the distribution of the inter-record times in an increasing population. J. Appl. Probab., 12, 148154, doi:10.2307/3212417.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., C. Li, and J. C. L. Chan, 2006: The interdecadal variations of the summer monsoon rainfall over South China. Meteor. Atmos. Phys., 93, 165175, doi:10.1007/s00703-006-0184-9.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J. Climate, 11, 22002222, doi:10.1175/1520-0442(1998)011<2200:CITEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 300 86 12
PDF Downloads 252 58 9