An Analysis of the Environmental Moisture Impacts of Western North Pacific Tropical Cyclones

Benjamin A. Schenkel Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Benjamin A. Schenkel in
Current site
Google Scholar
PubMed
Close
and
Robert E. Hart Department of Earth, Ocean, and Atmospheric Science, The Florida State University, Tallahassee, Florida

Search for other papers by Robert E. Hart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study examines the environmental moisture anomalies present during western North Pacific tropical cyclone (TC) passage using storm-relative composites. Composited precipitable water anomalies reveal asymmetric anomalies with dry anomalies to the northwest and southwest of the TC and moist anomalies to the east of the TC. Precipitable water anomalies filtered in space and time suggest that the moisture anomalies in the northwest, southwest, and east regions (NWR, SWR, and ER, respectively) are partially due to the TC, while the anomalies in the SWR are also forced by a convectively suppressed Madden–Julian oscillation (MJO) and equatorial Rossby wave (ERW). Composited vertically integrated moisture budgets and backward parcel trajectories reveal that the moisture anomalies in the NWR, SWR, and ER are primarily due to the convergence of climatological mean moisture by the anomalous meridional wind. This convergence is induced by the secondary circulation of the TC in the NWR and ER and by inertial instability induced by the TC, MJO, and ERW in the SWR and ER as also suggested by prior work. Dry anomalies in the NWR are also forced by the advection of moisture by lower-tropospheric northerly wind anomalies associated with the primary circulation of the TC. Together with prior work, these results suggest that TCs can have significant impacts on their large-scale atmospheric environment extending well beyond the spatiotemporal scales of the lower-tropospheric cyclonic circulation of the TC.

Corresponding author address: Benjamin A. Schenkel, Department of Atmospheric and Environmental Sciences, DAES-ES351, University at Albany, State University of New York, Albany, NY 12222. E-mail: benschenkel@gmail.com

Abstract

The present study examines the environmental moisture anomalies present during western North Pacific tropical cyclone (TC) passage using storm-relative composites. Composited precipitable water anomalies reveal asymmetric anomalies with dry anomalies to the northwest and southwest of the TC and moist anomalies to the east of the TC. Precipitable water anomalies filtered in space and time suggest that the moisture anomalies in the northwest, southwest, and east regions (NWR, SWR, and ER, respectively) are partially due to the TC, while the anomalies in the SWR are also forced by a convectively suppressed Madden–Julian oscillation (MJO) and equatorial Rossby wave (ERW). Composited vertically integrated moisture budgets and backward parcel trajectories reveal that the moisture anomalies in the NWR, SWR, and ER are primarily due to the convergence of climatological mean moisture by the anomalous meridional wind. This convergence is induced by the secondary circulation of the TC in the NWR and ER and by inertial instability induced by the TC, MJO, and ERW in the SWR and ER as also suggested by prior work. Dry anomalies in the NWR are also forced by the advection of moisture by lower-tropospheric northerly wind anomalies associated with the primary circulation of the TC. Together with prior work, these results suggest that TCs can have significant impacts on their large-scale atmospheric environment extending well beyond the spatiotemporal scales of the lower-tropospheric cyclonic circulation of the TC.

Corresponding author address: Benjamin A. Schenkel, Department of Atmospheric and Environmental Sciences, DAES-ES351, University at Albany, State University of New York, Albany, NY 12222. E-mail: benschenkel@gmail.com
Save
  • Andersson, E., and Coauthors, 2005: Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteor. Soc., 86, 387402, doi:10.1175/BAMS-86-3-387.

    • Search Google Scholar
    • Export Citation
  • Archambault, H., L. Bosart, D. Keyser, and J. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Back, L., and C. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett.,33, L17810, doi:10.1029/2006GL026672.

  • Berrisford, P., and Coauthors, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, doi:10.1002/qj.864.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., L. Takacs, A. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., J. Chen, F. Robertson, and R. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor., 47, 2279–2299, doi:10.1175/2008JAMC1921.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., F. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Chavas, D., and K. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett.,37, L18816, doi:10.1029/2010GL044558.

  • Chiodo, G., and L. Haimberger, 2010: Interannual changes in mass consistent energy budgets from ERA-Interim and satellite data. J. Geophys. Res.,115, D02112, doi:10.1029/2009JD012049.

  • Chu, J., C. Sampson, A. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best tracks, 1945–2000. Naval Research Laboratory, Reference NRL/MR/7540-02-16. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html.]

  • Dai, A., J. Wang, R. H. Ware, and T. Van Hove, 2002: Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res., 107, 4090, doi:10.1029/2001JD000642.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Draxler, R., 1999: HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, 46 pp.

  • Emanuel, K., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2008: The hurricane–climate connection. Bull. Amer. Meteor. Soc., 89, ES10–ES20, doi:10.1175/BAMS-89-5-Emanuel.

  • Frank, W., 1977: The structure and energetics of the tropical cyclone. I. Storm structure. Mon. Wea. Rev., 105, 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W., 1982: Large-scale characteristics of tropical cyclones. Mon. Wea. Rev., 110, 572586, doi:10.1175/1520-0493(1982)110<0572:LSCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W., and P. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T., L. Bosart, and R. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, doi:10.1175/2010MWR3243.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Grams, C., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Grams, C., S. Jones, C. Davis, P. Harr, and M. Weissmann, 2013a: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 21482164, doi:10.1002/qj.2091.

    • Search Google Scholar
    • Export Citation
  • Grams, C., S. Jones, and C. Davis, 2013b: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 21652180, doi:10.1002/qj.2119.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, doi:10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high-altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, doi:10.1175/JAS3596.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P., and J. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, doi:10.1175/2008MWR2558.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P., D. Anwender, and S. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, doi:10.1175/2008MWR2248.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R., 2011: An inverse relationship between aggregate Northern Hemisphere tropical cyclone activity and subsequent winter climate. Geophys. Res. Lett.,38, L01705, doi:10.1029/2010GL045612.

  • Hart, R., R. Maue, and M. Watson, 2007: Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Wea. Rev., 135, 39904005, doi:10.1175/2007MWR2038.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R., R. Maue, and M. Watson, 2008: How long does the climate record “remember” a tropical cyclone? Bull. Amer. Meteor. Soc., 89, 596598.

    • Search Google Scholar
    • Export Citation
  • Hatsushika, H., J. Tsutsui, M. Fiorino, and K. Onogi, 2006: Impact of wind profile retrievals on the analysis of tropical cyclones in the JRA-25 reanalysis. J. Meteor. Soc. Japan, 84, 891905, doi:10.2151/jmsj.84.891.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H., and D. Rubsam, 1968: Hurricane Hilda, 1964. Mon. Wea. Rev., 96, 617636, doi:10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H., and S. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G., 1986: Interannual variability of the Australian summer monsoon at Darwin: 1952–82. Mon. Wea. Rev., 114, 594604, doi:10.1175/1520-0493(1986)114<0594:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 5779, doi:10.1007/BF01022521.

  • Hoskins, B., I. Draghici, and H. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, doi:10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Houze, R., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344, doi:10.1175/2009MWR2989.1.

  • Jones, S., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G., K. Straub, and P. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G., M. Wheeler, P. Haertel, K. Straub, and P. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781791, doi:10.1175/WAF1026.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • LaSeur, N., and H. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694709, doi:10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manning, D., and R. Hart, 2007: Evolution of North Atlantic ERA40 tropical cyclone representation. Geophys. Res. Lett.,34, L05705, doi:10.1029/2006GL028266.

  • McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina (2005). Part II: Evolution and hemispheric impacts of a diabatically generated warm pool. Mon. Wea. Rev., 135, 39273949, doi:10.1175/2007MWR2096.1.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, A. Paukkunen, A. J. Heymsfield, and S. J. Oltmans, 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18, 135156, doi:10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nieto Ferreira, R., and W. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285, doi:10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Palmén, E., and C. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation, Academic Press, 603 pp.

  • Riemer, M., S. Jones, and C. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modeling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, doi:10.1002/qj.189.

    • Search Google Scholar
    • Export Citation
  • Roundy, P., and W. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B., and R. Hart, 2011: Potential implications of tropical cyclone passage. Bull. Amer. Meteor. Soc., 91, 12821283.

  • Schenkel, B., and R. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475, doi:10.1175/2011JCLI4208.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C., J. Molinari, and K. Mohr, 2011: Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. J. Atmos. Sci., 68, 195209, doi:10.1175/2010JAS3396.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788, doi:10.1175/MWR-D-11-00110.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, doi:10.1175/JCLI-D-13-00018.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and S. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 33963407, doi:10.1175/JAS3539.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, doi:10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D., and D. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, doi:10.1175/2009JAS2916.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res.,113, D05102, doi:10.1029/2007JD009006.

  • Thorne, P., and R. Vose, 2010: Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bull. Amer. Meteor. Soc., 91, 353361, doi:10.1175/2009BAMS2858.1.

    • Search Google Scholar
    • Export Citation
  • Tomas, R., and P. Webster, 1997: The role of inertial instability in determining the location and strength of near-equatorial convection. Quart. J. Roy. Meteor. Soc., 123, 14451482, doi:10.1002/qj.49712354202.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., J. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., and C. D. Thorncroft, 2013: The role of convectively coupled atmospheric Kelvin waves on African easterly wave activity. Mon. Wea. Rev., 141, 19101924, doi:10.1175/MWR-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 27042722, doi:10.1175/MWR-D-10-05028.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. Janiga, 2012a: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, doi:10.1175/MWR-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and C. J. Schreck III, 2012b: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 21982214, doi:10.1175/MWR-D-11-00305.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, D., and R. Waterman, 1979: Large-scale atmospheric conditions during the intensification of Hurricane Carmen (1974). I. Temperature, moisture and kinematics. Mon. Wea. Rev., 107, 283294, doi:10.1175/1520-0493(1979)107<0283:LSACDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vincent, D., and A. Fink, 2001: Tropical cyclone environments over the northeastern and northwestern Pacific based on ERA-15 analyses. Mon. Wea. Rev., 129, 19281948, doi:10.1175/1520-0493(2001)129<1928:TCEOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002, doi:10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518541, doi:10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627, doi:10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A., and C. Velden, 2011: Seamless advective blending of total precipitable water retrievals from polar-orbiting satellites. J. Appl. Meteor. Climatol., 50, 10241036, doi:10.1175/2010JAMC2589.1.

    • Search Google Scholar
    • Export Citation
  • Wood, K., and E. Ritchie, 2014: A 32-year reanalysis intercomparison of tropical cyclone structure in the eastern North Pacific and North Atlantic. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 53. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper244195.html.]

  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 71 7
PDF Downloads 109 42 6