Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Interseasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data

Shu-peng Ho COSMIC Project Office, University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Shu-peng Ho in
Current site
Google Scholar
PubMed
Close
,
Liang Peng COSMIC Project Office, University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Liang Peng in
Current site
Google Scholar
PubMed
Close
,
Richard A. Anthes COSMIC Project Office, University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard A. Anthes in
Current site
Google Scholar
PubMed
Close
,
Ying-Hwa Kuo COSMIC Project Office, University Corporation for Atmospheric Research, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ying-Hwa Kuo in
Current site
Google Scholar
PubMed
Close
, and
Hsiao-Chun Lin National Central University, Jhong-Li, Taiwan

Search for other papers by Hsiao-Chun Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial and temporal variability of the marine boundary layer (MBL) over the southeastern Pacific is studied using high-resolution radiosonde data from the VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx), lidar cloud measurements from the CALIOP instrument on the CALIPSO satellite, radio occultation (RO) data from the COSMIC satellites, and the ERA-Interim. The height of the MBL (MBLH) is estimated using three RO-derived parameters: the bending angle, refractivity, and water vapor pressure computed from the refractivity derived from a one-dimensional variational data inversion (1D-VAR) procedure. Two different diagnostic methods (minimum gradient and break point method) are compared. The results show that, although a negative bias in the refractivity exists as a result of superrefraction, the spatial and temporal variations of the MBLH determined from the RO observations are consistent with those from CALIOP and the radiosondes. The authors find that the minimum gradient in the RO bending angle gives the most accurate estimation of the MBL height.

Corresponding author address: Dr. Shu-Peng Ho, COSMIC Project Office, University Corporation for Atmospheric Research, 3085 Center Green Dr., Boulder, CO 80301. E-mail: spho@ucar.edu

Abstract

The spatial and temporal variability of the marine boundary layer (MBL) over the southeastern Pacific is studied using high-resolution radiosonde data from the VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx), lidar cloud measurements from the CALIOP instrument on the CALIPSO satellite, radio occultation (RO) data from the COSMIC satellites, and the ERA-Interim. The height of the MBL (MBLH) is estimated using three RO-derived parameters: the bending angle, refractivity, and water vapor pressure computed from the refractivity derived from a one-dimensional variational data inversion (1D-VAR) procedure. Two different diagnostic methods (minimum gradient and break point method) are compared. The results show that, although a negative bias in the refractivity exists as a result of superrefraction, the spatial and temporal variations of the MBLH determined from the RO observations are consistent with those from CALIOP and the radiosondes. The authors find that the minimum gradient in the RO bending angle gives the most accurate estimation of the MBL height.

Corresponding author address: Dr. Shu-Peng Ho, COSMIC Project Office, University Corporation for Atmospheric Research, 3085 Center Green Dr., Boulder, CO 80301. E-mail: spho@ucar.edu
Save
  • Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate, and space weather. Atmos. Meas. Tech, 4, 10771103, doi:10.5194/amt-4-1077-2011.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., G. A. Hajj, T. K. Meehan, D. Dong, B. A. Iijima, A. J. Mannucci, and E. R. Kursinski, 2009: Rising and setting GPS occultations by use of open-loop tracking. J. Geophys. Res., 114, D04101, doi:10.1029/2008JD010483.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, doi:10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Bean, B. R., and E. J. Dutton, 1968: Radio Meteorology. National Bureau of Standards Monogr. No. 92, National Bureau of Standards, 435 pp.

  • Biondi, R., W. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard, 2012: Thermal structure of intense convective clouds derived from GPS radio occultations. Atmos. Chem. Phys., 12, 53095318, doi:10.5194/acp-12-5309-2012.

    • Search Google Scholar
    • Export Citation
  • Biondi, R., S.-P. Ho, W. Randel, S. Syndergaard, and T. Neubert, 2013: Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements. J. Geophys. Res. Atmos., 118, 52475259, doi:10.1002/jgrd.50448.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Chan, K. M., and R. Wood, 2013: The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res. Atmos., 118, 12 42212 434, doi:10.1002/2013JD020147.

    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., P. Minnis, J. K. Ayers, M. J. McGill, R. Palikonda, D. A. Spangenberg, W. L. Smith Jr., and C. R. Yost, 2010: Evaluation of satellite-based upper troposphere cloud top height retrievals in multilayer cloud conditions during TC4. J. Geophys. Res., 115, D00J05, doi:10.1029/2009JD013305.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., S. Yuter, D. Mechem, C. W. Fairall, C. Burleyson, and P. Zuidema, 2012: Observations of stratocumulus clouds and their effect on the eastern Pacific surface heat budget along 20°S. J. Climate, 25, 85428567, doi:10.1175/JCLI-D-11-00618.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., J. Teixeira, E. T. Olsen, and E. F. Fishbein, 2004: Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific. Geophys. Res. Lett., 31, L17102, doi:10.1029/2004GL020174.

    • Search Google Scholar
    • Export Citation
  • Guo, P., Y.-H. Kuo, S. V. Sokolovskiy, and D. H. Lenschow, 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, doi:10.1175/2011JAS3612.1.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Carbon Dioxide Analysis Center Numerical Data Package NDP-026E ORNL/CDIAC-153, 75 pp., doi:10.3334/CDIAC/cli.ndp026e.

  • Ho, S.-P., and Coauthors, 2009a: Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers. J. Geophys. Res., 114, D23107, doi:10.1029/2009JD011969.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., M. Goldberg, Y.-H. Kuo, C.-Z. Zou, and W. Schreiner, 2009b: Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results. Terr. Atmos. Oceanic Sci., 20, 87100, doi:10.3319/TAO.2007.12.06.01(F3C).

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., Y.-H. Kuo, W. Schreiner, and X. Zhou, 2010a: Using SI-traceable global positioning system radio occultation measurements for climate monitoring [in “State of the Climate in 2009”]. Bull. Amer. Meteor. Soc., 91, S36S37, doi:10.1175/BAMS-91-7-StateoftheClimate.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., X. Zhou, Y.-H. Kuo, D. Hunt, and J.-H. Wang, 2010b: Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis. Remote Sens., 2, 13201330, doi:10.3390/rs2051320.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2012: Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers. J. Geophys. Res., 117, D18111, doi:10.1029/2012JD017665.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., X. Yue, Z. Zeng, C. Ao, C.-Y. Huang, E. R. Kursinski, and Y.-H. Kuo, 2014: Applications of COSMIC radio occultation data from the troposphere to ionosphere and potential impacts of COSMIC-2 data. Bull. Amer. Meteor. Soc., 95, ES18ES22, doi:10.1175/BAMS-D-13-00035.1.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., S. Berthier, P. Chazette, J.-C. Raut, F. Dulac, and S.-C. Yoon, 2008: Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys., 8, 37053720, doi:10.5194/acp-8-3705-2008.

    • Search Google Scholar
    • Export Citation
  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30, 227, doi:10.1109/36.124212.

    • Search Google Scholar
    • Export Citation
  • Knibbe, W. J. J., J. F. de Haan, J. W. Hovenier, D. M. Stam, R. B. A. Koelemeijer, and P. Stammes, 2000: Deriving terrestrial cloud top pressure from photopolarimetry of reflected light. J. Quant. Spectrosc. Radiat. Transfer, 64, 173199, doi:10.1016/S0022-4073(98)00135-6.

    • Search Google Scholar
    • Export Citation
  • Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, 2002: Global distributions of effective cloud fraction and cloud top pressure derived from oxygen A band spectra measured by the Global Ozone Monitoring Experiment: Comparison to ISCCP data. J. Geophys. Res., 107, AAC 5-1–AAC 5-9, doi:10.1029/2001JD000840.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, doi:10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Liu, S.-Y., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, doi:10.1175/2010JCLI3552.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2011: Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements. J. Quant. Spectrosc. Radiat. Transfer, 112, 204213, doi:10.1016/j.jqsrt.2010.05.006.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., and Coauthors, 2004: Combined lidar–radar remote sensing: Initial results from CRYSTAL-FACE. J. Geophys. Res., 109, D07203, doi:10.1029/2003JD004030.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., M. A. Vaughan, C. R. Trepte, W. D. Hart, D. L. Hlavka, D. M. Winker, and R. Kuehn, 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., C. R. Yost, S. Sun-Mack, and Y. Chen, 2008: Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys. Res. Lett., 35, L12801, doi:10.1029/2008GL033947.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Climate, 11, 369382, doi:10.1175/1520-0442(1998)011<0369:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Poole, L. R., D. M. Winker, J. R. Pelon, and M. P. McCormick, 2003: CALIPSO: Global aerosol and cloud observations from lidar and passive instruments. Sensors, systems, and next-generation satellites VI, H. Fujisada, et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 481), 419426, doi:10.1117/12.462519.

  • Powell, K. A., and Coauthors, 2009: CALIPSO lidar calibration algorithms. Part I: Nighttime 532-nm parallel channel and 532-nm perpendicular channel. J. Atmos. Oceanic Technol., 26, 20152033, doi:10.1175/2009JTECHA1242.1.

    • Search Google Scholar
    • Export Citation
  • Powell, K. A., M. A. Vaughan, R. R. Rogers, R. E. Kuehn, W. H. Hunt, K.-P. Lee, and T. D. Murray, 2010: The CALIOP 532-nm channel daytime calibration: Version 3 algorithm. Proc. 25th Int. Laser Radar Conf., St. Petersburg, Russia, Int. Coordination-Group for Laser Atmospheric Studies, 13671370.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., P. Minnis, M. McGill, and J. C. Chae, 2004: Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett., 31, L11102, doi:10.1029/2004GL019699.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., 2001: Tracking tropospheric radio occultation signals from low Earth orbit. Radio Sci., 36, 483498, doi:10.1029/1999RS002305.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., 2003: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci., 38, 1058, doi:10.1029/2002RS002728.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., Y.-H. Kuo, C. Rocken, W. S. Schreiner, D. Hunt, and R. A. Anthes, 2006: Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett., 33, L12813, doi:10.1029/2006GL025955.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., C. Rocken, D. H. Lenschow, Y.-H. Kuo, R. A. Anthes, W. S. Schreiner, and D. C. Hunt, 2007: Observing the moist troposphere with radio occultation signals from COSMIC. Geophys. Res. Lett., 34, L18802, doi:10.1029/2007GL030458.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S. V., D. H. Lenschow, Z. Zeng, C. Rocken, W. S. Schreiner, D. C. Hunt, Y.-H. Kuo, and R. A. Anthes, 2011: Monitoring the depth of the atmospheric boundary layer by FORMOSAT-3/COSMIC. Proc. Fifth FORMOSAT-3/COSMIC Data Users Workshop & ICGPSRO, Taipei, Taiwan, University Corporation for Atmospheric Research, 18 pp. [Available online at http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-004-454.]

  • Sokolovskiy, S., W. Schreiner, Z. Zeng, D. Hunt, Y.-C. Lin, and Y.-H. Kuo, 2014: Observation, analysis, and modeling of deep radio occultation signals: Effects of tropospheric ducts and interfering signals. Radio Sci., 49, 954970, doi:10.1002/2014RS005436.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M., S. Young, D. Winker, K. Powell, A. Omar, Z. Liu, Y. Hu, and C. Hostetler, 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser radar techniques for atmospheric sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), 1630.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y.-X. Hu, A. Powell, Z.-Y. Liu, W. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and Coauthors, 2011: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Wu, D., Y. Hu, M. McCormick, K. Xu, Z. Liu, B. Smith, A. Omar, and F. Chang, 2008: Deriving marine-boundary-layer lapse rate from collocated CALIPSO, MODIS, and AMSR-E data to study global low-cloud height statistics. IEEE Trans. Geosci. Remote Sens., 5, 649652, doi:10.1109/LGRS.2008.2002024.

    • Search Google Scholar
    • Export Citation
  • Xie, F., S. Syndergaard, E. R. Kursinski, and B. Herman, 2006: An approach for retrieving marine boundary layer refractivity from GPS occultation data in the presence of superrefraction. J. Atmos. Oceanic Technol., 23, 16291644, doi:10.1175/JTECH1996.1.

    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, A. J. Mannucci, and E. R. Kursinski, 2012: Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys., 12, 903918, doi:10.5194/acp-12-903-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 910 280 34
PDF Downloads 726 167 23