Investigation of Climatological Onset and Withdrawal of the Rainy Season in Panama Based on a Daily Gridded Precipitation Dataset with a High Horizontal Resolution

Tosiyuki Nakaegawa Climate Research Department, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Tosiyuki Nakaegawa in
Current site
Google Scholar
PubMed
Close
,
Osamu Arakawa Climate Research Department, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Osamu Arakawa in
Current site
Google Scholar
PubMed
Close
, and
Kenji Kamiguchi Climate Research Department, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Kenji Kamiguchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study investigated the onset and withdrawal dates of the rainy season in Panama by using newly developed, gridded, daily precipitation datasets with a high horizontal resolution of 0.05° based on ground precipitation observations. The onset and withdrawal dates showed very complicated geographical features, although the country of Panama is oriented parallel to latitude lines, and the geographical patterns of the onset and withdrawal dates could simply reflect the latitudinal migration of the intertropical convergence zone, as seen in other regions and countries. An absolute threshold value of 3 mm day−1 (pentad mean precipitation) was used to determine the onset and withdrawal dates. The onset and withdrawal dates obtained from the gridded daily precipitation dataset clearly depicted the migration of the rainy season. The rainy season starts suddenly in pentad 21 (11–15 April) in most of eastern Panama and in pentad 22 (16–20 April) in most of western Panama. The termination of the rainy season begins in Los Santos Province during pentad 67 (27 November–1 December) and expands to both the eastern and western surrounding areas. There is no dry season in the western part of the Caribbean coastal zone. Water vapor fluxes and topography suggest dynamical causes, such as a topographically induced upward mass flux accompanied by high humidity, for the complicated geographical features of the onset and withdrawal dates. An assessment was made of uncertainties in the timing of the onset and withdrawal associated with the definition of these terms.

Corresponding author address: T. Nakaegawa, Climate Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: tnakaega@mri-jma.go.jp

Abstract

The present study investigated the onset and withdrawal dates of the rainy season in Panama by using newly developed, gridded, daily precipitation datasets with a high horizontal resolution of 0.05° based on ground precipitation observations. The onset and withdrawal dates showed very complicated geographical features, although the country of Panama is oriented parallel to latitude lines, and the geographical patterns of the onset and withdrawal dates could simply reflect the latitudinal migration of the intertropical convergence zone, as seen in other regions and countries. An absolute threshold value of 3 mm day−1 (pentad mean precipitation) was used to determine the onset and withdrawal dates. The onset and withdrawal dates obtained from the gridded daily precipitation dataset clearly depicted the migration of the rainy season. The rainy season starts suddenly in pentad 21 (11–15 April) in most of eastern Panama and in pentad 22 (16–20 April) in most of western Panama. The termination of the rainy season begins in Los Santos Province during pentad 67 (27 November–1 December) and expands to both the eastern and western surrounding areas. There is no dry season in the western part of the Caribbean coastal zone. Water vapor fluxes and topography suggest dynamical causes, such as a topographically induced upward mass flux accompanied by high humidity, for the complicated geographical features of the onset and withdrawal dates. An assessment was made of uncertainties in the timing of the onset and withdrawal associated with the definition of these terms.

Corresponding author address: T. Nakaegawa, Climate Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: tnakaega@mri-jma.go.jp
Save
  • Alfaro, E. J., 2002: Some characteristics of the annual precipitation cycle in Central America and their relationships with its surrounding tropical oceans. Tóp. Meteor. Oceanogr., 9, 88103.

    • Search Google Scholar
    • Export Citation
  • Alfaro, E. J., and L. Cid, 1999: Análisis de las anomalías en el inicio y el término de la estación lluviosa en Centroamérica y su relación con los océanos Pacífico y Atlántico. Tóp. Meteor. Oceanogr.,6, 1–13.

    • Search Google Scholar
    • Export Citation
  • Amador, J. A., 1998: A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr.,5, 91–102.

  • Amador, J. A., 2008: The Intra-Americas Seas low-level jet (IALLJ): Overview and future research. Ann. N. Y. Acad. Sci., 1146, 153188, doi:10.1196/annals.1446.012.

    • Search Google Scholar
    • Export Citation
  • Amador, J. A., E. J. Alfaro, O. G. Lizano, and V. O. Magaña, 2006: Atmospheric forcing in the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 101142, doi:10.1016/j.pocean.2006.03.007.

    • Search Google Scholar
    • Export Citation
  • Condit, R., R. Pérez, and N. Daguerre, 2010: Forest of Panama and Costa Rica. Trees of Panama and Costa Rica, Princeton University Press, 11–16.

  • Cortez, M., 2000: Variaciones intraestacionales de la actividad convectiva en México y América Central. Atmósfera, 13, 95108.

  • Durán-Quesada, A. M., L. Gimeno, J. A. Amador, and R. Nieto, 2010: Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res., 115, D05103, doi:10.1029/2009JD012455.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and E. J. Alfaro, 1999: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Climate, 12, 20932103, doi:10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • ETESA, cited 2014: National network of meteorological and hydrological stations. Empresa de Transmisión Eléctrica, S.A. [Available online at http://www.hidromet.com.pa/red_nacional.php.]

  • Fábrega, J., and Coauthors, 2013: Hydroclimate projections for Panama in the late 21st Century. Hydrol. Res. Lett., 7, 2329, doi:10.3178/hrl.7.23.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2001: Subtropical cold surges: Regional aspects and global distribution. Int. J. Climatol., 21, 11811197, doi:10.1002/joc.687.

    • Search Google Scholar
    • Export Citation
  • Gramzow, R. H., and W. K. Henry, 1972: The rainy pentads of Central America. J. Appl. Meteor., 11, 637642, doi:10.1175/1520-0450(1972)011<0637:TRPOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1978: On modes of tropical circulation and climate anomalies. J. Atmos. Sci., 35, 22222231, doi:10.1175/1520-0469(1978)035<2222:OMOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., A. N. Hahmann, and J. E. Geisler, 1989: An investigation of the annual cycle of convective activity over the tropical Americas. J. Climate, 2, 13881403, doi:10.1175/1520-0442(1989)002<1388:AIOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multi-satellite precipitation analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scalea. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • IMD, 1943: Climatological atlas for airmen. India Meteorological Department, 100 pp.

  • JMA, 2013: Introduction to meteorological observation statistics (in Japanese). Guidelines for Meteorological Observation Statistics, Japan Meteorological Agency, 126 pp. [Available online at http://www.data.jma.go.jp/obd/stats/data/kaisetu/index.html.]

  • JMA, cited 2014: Historical record of the onset and withdrawal date of the rainy season, Baiu, in Japan (in Japanese). [Available online at http://www.data.jma.go.jp/fcd/yoho/baiu/index.html.]

  • Kamiguchi, K., O. Arakawa, A. Kitoh, A. Yatagai, A. Hamada, and N. Yasutomi, 2010: Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years. Hydrol. Res. Lett., 4, 6064, doi:10.3178/hrl.4.60.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and Coauthors, 2002: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol., 22, 14411453, doi:10.1002/joc.773.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, doi:10.2151/jmsj.2015-001, in press.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., S. J. Camargo, A. Seth, J. A. Marengo, L. M. V. Carvalho, D. Allured, R. Fu, and C. S. Vera, 2007: Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J. Climate, 20, 20372050, doi:10.1175/JCLI4122.1.

    • Search Google Scholar
    • Export Citation
  • MAFF, 2003: Diversity of irrigation by hydrological conditions, etc. The global diversity of irrigation for achieving sustainable water use and forming healthy water cycles, Japanese Institute of Irrigation and Drainage, 15–32. [Available online at http://www.maff.go.jp/j/nousin/keityo/mizu_sigen/pdf/panf01_e.pdf.]

  • Magaña, V., J. A. Amador, and S. Medina, 1999: The mid-summer drought over Mexico and Central America. J. Climate,12, 1577–1588, doi:10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

  • Marengo, J. A., B. Liebmann, V. E. Kousky, N. P. Filizola, and I. C. Wainer, 2001: Onset and end of the rainy season in the Brazilian Amazon Basin. J. Climate, 14, 833852, doi:10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., 1997: Seasonal transition of summer rainy season over Indochina and adjacent monsoon region. Adv. Atmos. Sci., 14, 231245, doi:10.1007/s00376-997-0022-0.

    • Search Google Scholar
    • Export Citation
  • Méndez, M., and V. Magaña, 2010: Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Climate, 23, 11751188, doi:10.1175/2009JCLI3080.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 11401156, doi:10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murphy, M. J., K. P. Georgakakos, and E. Shamir, 2014: Climatological analysis of December rainfall in the Panama Canal watershed. Int. J. Climatol., 34, 403–415, doi:10.1002/joc.3694.

    • Search Google Scholar
    • Export Citation
  • Nakaegawa, T., A. Kitoh, Y. Ishizaki, S. Kusunoki, and H. Murakami, 2014a: Caribbean low-level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi-model ensemble and fine-mesh atmospheric general circulation models. Int. J. Climatol., 34, 964977, doi:10.1002/joc.3733.

    • Search Google Scholar
    • Export Citation
  • Nakaegawa, T., A. Kitoh, S. Kusunoki, H. Murakami, and O. Arakawa, 2014b: Hydroclimate change over Central America and the Caribbean in a global warming climate projected with 20-km and 60-km mesh MRI atmospheric general circulation models. Pap. Meteor. Geophys., 65, 1533, doi:10.2467/mripapers.65.15.

    • Search Google Scholar
    • Export Citation
  • Nakaegawa, T., A. Kitoh, H. Murakami, and S. Kusunoki, 2014c: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late 21st century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol., 116, 155168, doi:10.1007/s00704-013-0934-9.

    • Search Google Scholar
    • Export Citation
  • Ogallo, L. A., 1989: The spatial and temporal patterns of the East African seasonal rainfall derived from principal component analysis. Int. J. Climatol., 9, 145167, doi:10.1002/joc.3370090204.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaake, J., 2004: Application of PRISM climatologies for hydrologic modeling and forecasting in the western U.S. 18th Conf. on Hydrology, Amer. Meteor. Soc., Seattle, WA, 5.3. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72159.htm.]

  • Sombroek, W., 2001: Spatial and temporal patterns of Amazon rainfall: Consequences for the planning of agricultural occupation and the protection of primary forests. Ambio,30, 388–396, doi:10.1579/0044-7447-30.7.388.

  • Taylor, M. A., and E. Alfaro, 2005: Climate of Central America and the Caribbean. The Encyclopedia of World Climatology, J. Oliver, Ed., Springer Press, 183–189, doi:10.1007/1-4020-3266-8.

  • Taylor, M. A., D. B. Enfield, and A. A. Chen, 2002: The influence of the tropical Atlantic vs. the tropical Pacific on Caribbean rainfall. J. Geophys. Res., 107, 3127, doi:10.1029/2001JC001097.

    • Search Google Scholar
    • Export Citation
  • UNESCO, 2008: Balance hídrico superficial de Panamá, período 1971–2002. Documento Técnicos del PHI-LAC 9, 133 pp. [Available online at unesdoc.unesco.org/images/0015/001591/159103s.pdf.]

  • Utsumi, N., S. Kanae, H. Kim, S. Seto, T. Oki, T. Nitta, and Y. Hirabayashi, 2008: Importance of wind-induced undercatch adjustment in a gauge-based analysis of daily precipitation over Japan. Hydrol. Res. Lett., 2, 4751, doi:10.3178/hrl.2.47.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2007: Variability of the Caribbean low-level jet and its relations to climate. Climate Dyn., 29, 411422, doi:10.1007/s00382-007-0243-z.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and D. B. Enfield, 2001: The tropical Western Hemisphere warm pool. Geophys. Res. Lett., 28, 16351638, doi:10.1029/2000GL011763.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and D. B. Enfield, 2003: A further study of the tropical Western Hemisphere warm pool. J. Climate, 16, 14761493, doi:10.1175/1520-0442-16.10.1476.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., C. M. Rowe, and Y. Mintz, 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5, 589606, doi:10.1002/joc.3370050602.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 520, doi:10.1175/JCLI-3249.1.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Yavitt, J. B., S. J. Wright, and R. K. Wieder, 2004: Seasonal drought and dry season irrigation influence leaf litter nutrients and soil enzymes in a moist, lowland forest in Panama. Austral Ecol., 29, 177188, doi:10.1111/j.1442-9993.2004.01334.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and B. Wang, 2008: Global summer monsoon rainy seasons. Int. J. Climatol., 28, 15631578, doi:10.1002/joc.1659.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 734 233 33
PDF Downloads 315 125 26