Challenges Associated with Adaptation to Future Urban Expansion

M. Georgescu School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona

Search for other papers by M. Georgescu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The most populated state in the United States, California, is projected to add millions of new inhabitants through the end of the current century, requiring considerable landscape conversion to the built environment. A suite of continuous multiyear, medium-range resolution (20-km grid spacing), ensemble-based simulations is examined to assess urban expansion climate effects on California in 2100, and potential strategies to alleviate them. Summertime [June–August (JJA)] warming due to urban expansion of 1°–2°C is greater relative to any other season, and is completely offset by a range of adaptation strategies: green roofs (highly transpiring), cool roofs (highly reflective), and hybrid roofs (with combined biophysical properties of green and cool roofs). After offsetting of urban-induced warming, cool and hybrid roofs lead to a further 1°–2°C reduction in JJA 2-m temperature, highlighting enhanced efficacy of these adaptation strategies. Guided by medium-range-resolution results, additional high-resolution (2-km grid spacing) experiments are conducted for a subset of the JJA periods conducted on a coarser scale. Urban-induced 1°–2°C warming (local maximum warming exceeds 4°C) is simulated, and is offset by cool and green roof deployment. In agreement with coarser-resolution results, maximum near-surface cooling is greater for cool roofs relative to green roofs. Reduced daytime warming associated with both cool and green roofs also modifies the convective mixed layer, reducing turbulent kinetic energy and planetary boundary layer height, although this impact is less for green roofs than for cool roofs. The results presented here demonstrate the importance of future urban expansion in California and illustrate climatic consequences with implications for regional air quality.

Denotes Open Access content.

Corresponding author address: Matei Georgescu, 975 S. Myrtle Ave., 5th floor, P.O. Box 875302, Tempe AZ 85287-5302. E-mail: matei.georgescu@asu.edu

Abstract

The most populated state in the United States, California, is projected to add millions of new inhabitants through the end of the current century, requiring considerable landscape conversion to the built environment. A suite of continuous multiyear, medium-range resolution (20-km grid spacing), ensemble-based simulations is examined to assess urban expansion climate effects on California in 2100, and potential strategies to alleviate them. Summertime [June–August (JJA)] warming due to urban expansion of 1°–2°C is greater relative to any other season, and is completely offset by a range of adaptation strategies: green roofs (highly transpiring), cool roofs (highly reflective), and hybrid roofs (with combined biophysical properties of green and cool roofs). After offsetting of urban-induced warming, cool and hybrid roofs lead to a further 1°–2°C reduction in JJA 2-m temperature, highlighting enhanced efficacy of these adaptation strategies. Guided by medium-range-resolution results, additional high-resolution (2-km grid spacing) experiments are conducted for a subset of the JJA periods conducted on a coarser scale. Urban-induced 1°–2°C warming (local maximum warming exceeds 4°C) is simulated, and is offset by cool and green roof deployment. In agreement with coarser-resolution results, maximum near-surface cooling is greater for cool roofs relative to green roofs. Reduced daytime warming associated with both cool and green roofs also modifies the convective mixed layer, reducing turbulent kinetic energy and planetary boundary layer height, although this impact is less for green roofs than for cool roofs. The results presented here demonstrate the importance of future urban expansion in California and illustrate climatic consequences with implications for regional air quality.

Denotes Open Access content.

Corresponding author address: Matei Georgescu, 975 S. Myrtle Ave., 5th floor, P.O. Box 875302, Tempe AZ 85287-5302. E-mail: matei.georgescu@asu.edu
Save
  • Adachi, S. A., F. Kimura, H. Kusaka, T. Inoue, and H. Ueda, 2012: Comparison of the impact of global climate changes and urbanization on summertime future climate in the Tokyo metropolitan area. J. Appl. Meteor. Climatol., 51, 14411454, doi:10.1175/JAMC-D-11-0137.1.

    • Search Google Scholar
    • Export Citation
  • Akbari, H., and H. D. Matthews, 2012: Global cooling updates: Reflective roofs and pavements. Energy Build., 55, 26, doi:10.1016/j.enbuild.2012.02.055.

    • Search Google Scholar
    • Export Citation
  • Akbari, H., S. Menon, and A. Rosenfeld, 2009: Global cooling: Increasing world-wide urban albedos to offset CO2. Climatic Change, 94, 275286, doi:10.1007/s10584-008-9515-9.

    • Search Google Scholar
    • Export Citation
  • Argüeso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2014: Temperature response to future urbanization and climate change. Climate Dyn., 42, 2183–2199, doi:10.1007/s00382-013-1789-6.

    • Search Google Scholar
    • Export Citation
  • Bierwagen, B. G., D. M. Theobald, C. R. Pyke, A. Choate, P. Groth, J. V. Thomas, and P. Morefield, 2010: National housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. USA, 107, 20 88720 892, doi:10.1073/pnas.1002096107.

    • Search Google Scholar
    • Export Citation
  • California Department of Finance, 2013: Report P-1 (County): State and county total population projections, 2010–2060. [Available online at http://www.dof.ca.gov/research/demographic/reports/projections/P-1/.]

  • Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe, 2008: Climate change scenarios for the California region. Climatic Change, 87, 2142, doi:10.1007/s10584-007-9377-6.

    • Search Google Scholar
    • Export Citation
  • Chester, M., S. Pincetl, Z. Elizabeth, W. Eisenstein, and J. Matute, 2013: Infrastructure and automobile shifts: Positioning transit to reduce life-cycle environmental impacts for urban sustainability goals. Environ. Res. Lett., 8, 015041, doi:10.1088/1748-9326/8/1/015041.

    • Search Google Scholar
    • Export Citation
  • Ching, J., and Coauthors, 2009: National urban database and access portal tool. Bull. Amer. Meteor. Soc., 90, 11571168, doi:10.1175/2009BAMS2675.1.

    • Search Google Scholar
    • Export Citation
  • Connors, J. P., C. S. Galletti, and W. T. Chow, 2013: Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecol., 28, 271283, doi:10.1007/s10980-012-9833-1.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., W. Kessomkiat, J. Abatzoglou, and S. A. Mauget, 2011: The identification of distinct patterns in California temperature trends. Climatic Change, 108, 357382, doi:10.1007/s10584-011-0023-y.

    • Search Google Scholar
    • Export Citation
  • EPA, 2008a: Reducing urban heat islands: Compendium of strategies—Cool roofs. EPA, 28 pp. [Available online at http://www.epa.gov/heatisland/resources/pdf/CoolRoofsCompendium.pdf.]

  • EPA, 2008b: Reducing urban heat islands: Compendium of strategies—Green roofs. EPA, 26 pp. [Available online at http://www.epa.gov/heatisland/resources/pdf/GreenRoofsCompendium.pdf.]

  • Franco, G., D. R. Cayan, S. Moser, M. Hanemann, and M. A. Jones, 2011: Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Climatic Change, 109, 119, doi:10.1007/s10584-011-0318-z.

    • Search Google Scholar
    • Export Citation
  • Franklin, J., F. W. Davis, M. Ikegami, A. D. Syphard, L. E. Flint, A. L. Flint, and L. Hannah, 2013: Modeling plant species distributions under future climates: How fine scale do climate projections need to be? Global Change Biol., 19, 473483, doi:10.1111/gcb.12051.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., G. Miguez‐Macho, L. T. Steyaert, and C. P. Weaver, 2009: Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 2. Dynamical and thermodynamical response. J. Geophys. Res.,114, D05111, doi:10.1029/2008JD010762.

  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2011: An alternative explanation of the semiarid urban area “oasis effect.” J. Geophys. Res.,116, D24113, doi:10.1029/2011JD016720.

  • Georgescu, M., A. Mahalov, and M. Moustaoui, 2012: Seasonal hydroclimatic impacts of Sun Corridor expansion. Environ. Res. Lett., 7, 034026, doi:10.1088/1748-9326/7/3/034026.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2013: Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Climate Change, 3, 3741, doi:10.1038/nclimate1656.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA,111, 2909–2914, doi:10.1073/pnas.1322280111.

  • Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor., 38, 922940, doi:10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The international urban energy balance models comparison project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, doi:10.1175/2010JAMC2354.1.

    • Search Google Scholar
    • Export Citation
  • Gurney, K. R., I. Razlivanov, Y. Song, Y. Zhou, B. Benes, and M. Abdul-Massih, 2012: Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city. Environ. Sci. Technol., 46, 12 19412 202, doi:10.1021/es3011282.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and Coauthors, 2006: Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models. Bull. Amer. Meteor. Soc., 87, 17131726, doi:10.1175/BAMS-87-12-1713.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: GATOR‐GCMM: 2. A study of daytime and nighttime ozone layers aloft, ozone in national parks, and weather during the SARMAP field campaign. J. Geophys. Res.,106, 5403–5420, doi:10.1029/2000JD900559.

  • Jones, B., and B. C. O’Neill, 2013: Historically grounded spatial population projections for the continental United States. Environ. Res. Lett., 8, 044021, doi:10.1088/1748-9326/8/4/044021.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., H. F. Diaz, and G. Kukla, 1988: Urbanization: Its detection and effect in the United States climate record. J. Climate, 1, 10991123, doi:10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., K. C. Seto, A. Schneider, Z. Liu, L. Zhou, and W. Wang, 2007: Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Climate, 20, 22992306, doi:10.1175/JCLI4109.1.

    • Search Google Scholar
    • Export Citation
  • Keirstead, J., M. Jennings, and A. Sivakumar, 2012: A review of urban energy system models: Approaches, challenges and opportunities. Renewable Sustainable Energy Rev., 16, 38473866, doi:10.1016/j.rser.2012.02.047.

    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., and M. A. Snyder, 2012: Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Climate Dyn., 38, 10171029, doi:10.1007/s00382-011-1123-0.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910, doi:10.1175/JAM2169.1.

    • Search Google Scholar
    • Export Citation
  • LaDochy, S., R. Medina, and W. Patzert, 2007: Recent California climate variability: Spatial and temporal patterns in temperature trends. Climate Res., 33, 159169, doi:10.3354/cr033159.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., T. M. Butler, J. Steinkamp, B. R. Gurjar, and J. Lelieveld, 2007: Regional pollution potentials of megacities and other major population centers. Atmos. Chem. Phys., 7, 39693987, doi:10.5194/acp-7-3969-2007.

    • Search Google Scholar
    • Export Citation
  • Lebassi, B., J. Gonzalez, D. Fabris, E. Maurer, N. Miller, C. Milesi, P. Switzer, and R. Bornstein, 2009: Observed 1970–2005 cooling of summer daytime temperatures in coastal California. J. Climate, 22, 3558–3573, doi:10.1175/2008JCLI2111.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., M. Georgescu, P. Hyde, A. Mahalov, and M. Moustaoui, 2014: Achieving accurate simulations of urban impacts on ozone at high resolution. Environ. Res. Lett., 9, 114019, doi:10.1088/1748-9326/9/11/114019.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., and C. B. Field, 2011: California perennial crops in a changing climate. Climatic Change, 109, 317333, doi:10.1007/s10584-011-0303-6.

    • Search Google Scholar
    • Export Citation
  • Mahmud, A., M. Tyree, D. Cayan, N. Motallebi, and M. J. Kleeman, 2008: Statistical downscaling of climate change impacts on ozone concentrations in California. J. Geophys. Res.,113, D21103, doi:10.1029/2007JD009534.

  • Mills, G., 2007: Cities as agents of global change. Int. J. Climatol., 27, 18491857, doi:10.1002/joc.1604.

  • Moser, S., G. Franco, S. Pittiglio, W. Chou, and D. Cayan, 2009: The future is now: An update on climate change science impacts and response options for California. California Climate Change Center Rep. CEC-500-2008-071, 114 pp. [Available online at http://www.energy.ca.gov/2008publications/CEC-500-2008-071/CEC-500-2008-071.PDF.]

  • Myint, S. W., E. A. Wentz, A. J. Brazel, and D. A. Quattrochi, 2013: The impact of distinct anthropogenic and vegetation features on urban warming. Landscape Ecol., 28, 959978, doi:10.1007/s10980-013-9868-y.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, and J. Feddema, 2010: Effects of white roofs on urban temperature in a global climate model. Geophys. Res. Lett., 37, L03701, doi:10.1029/2009GL042194.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, doi:10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., 2008: A green roof model for building energy simulation programs. Energy Build., 40, 14661478, doi:10.1016/j.enbuild.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 59495965, doi:10.1002/2013JD021225.

    • Search Google Scholar
    • Export Citation
  • Santamouris, M., A. Synnefa, and T. Karlessi, 2011: Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy, 85, 30853102, doi:10.1016/j.solener.2010.12.023.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Song, J., and Z.-H. Wang, 2015: Interfacing the urban land–atmosphere system through coupled urban canopy and atmospheric models. Bound.-Layer Meteor., doi:10.1007/s10546-014-9980-9, in press.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Synnefa, A., and M. Santamouris, 2012: Advances on technical, policy and market aspects of cool roof technology in Europe: The Cool Roofs project. Energy Build., 55, 3541, doi:10.1016/j.enbuild.2011.11.051.

    • Search Google Scholar
    • Export Citation
  • Taha, H., 2008a: Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmos. Environ., 42, 87958809, doi:10.1016/j.atmosenv.2008.06.036.

    • Search Google Scholar
    • Export Citation
  • Taha, H., 2008b: Urban surface modification as a potential ozone air-quality improvement strategy in California: A mesoscale modelling study. Bound.-Layer Meteor., 127, 219239, doi:10.1007/s10546-007-9259-5.

    • Search Google Scholar
    • Export Citation
  • USDA, 2012: California agricultural statistics review: 2012–2013. USDA National Agricultural Statistics Service, Pacific Region–California, 131 pp. [Available online at www.cdfa.ca.gov/statistics/pdfs/2013/FinalDraft2012-2013.pdf.]

  • von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Weaver, C. P., and Coauthors, 2009: A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations. Bull. Amer. Meteor. Soc., 90, 18431863, doi:10.1175/2009BAMS2568.1.

    • Search Google Scholar
    • Export Citation
  • Wu, J. J., 2008: Making the case for landscape ecology: An effective approach to urban sustainability. Landscape J., 27, 4150, doi:10.3368/lj.27.1.41.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and Z.-H. Wang, 2014: Physical parameterization and sensitivity of urban hydrological models: Application to green roof systems. Build. Environ., 75, 250263, doi:10.1016/j.buildenv.2014.02.006.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn, and M. L. Fischer, 2009: Atmospheric inverse estimates of methane emissions from central California. J. Geophys. Res., 114, D16302, doi:10.1029/2008JD011671.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., S. H. Chen, M. J. Kleeman, and A. Mahmud, 2011: The impact of climate change on air quality–related meteorological conditions in California. Part II: Present versus future time simulation analysis. J. Climate, 24, 3362–3376, doi:10.1175/2010JCLI3850.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 778 310 17
PDF Downloads 537 181 14