Evaluation of WRF Mesoscale Climate Simulations over the Tibetan Plateau during 1979–2011

Yanhong Gao Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Yanhong Gao in
Current site
Google Scholar
PubMed
Close
,
Jianwei Xu Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Jianwei Xu in
Current site
Google Scholar
PubMed
Close
, and
Deliang Chen Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Deliang Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To develop a finescale dataset for the purpose of analyzing historical climatic change over the Tibet Plateau (TP), a high-resolution regional climate simulation for 1979–2011 was conducted using the Weather Research and Forecasting (WRF) Model driven by the ERA-Interim (ERA-Int). This work evaluates the high-resolution (30 km) WRF simulation in terms of annual variation, spatial structure, and 33-yr temporal trends of surface air temperature (Tair) and precipitation (Prec) over the TP, with reference to station observations. Another focus is on the examination of the height–temperature relationship. Inheriting from its forcing, the WRF simulation presents an apparent cold bias in the TP. The cold bias is largely reduced by a lapse rate correction of the simulated surface air temperature with help of the station and model elevations. ERA-Int presents the same sign of Tair and Prec trends as the observations, but with smaller magnitude, especially in the dry season. Compared to its forcing, the WRF simulation improves the simulation of the annual cycles and temporal trends of Tair and Prec in the wet season. In the dry season, however, there is hardly any improvement. The observed Tair presents a downward linear trend in the lapse rate. This feature is examined in the WRF simulation in comparison to ERA-Int. The WRF simulation captures the observed lapse rate and its temporal trend better than ERA-Int. The decreasing lapse rate over time confirms that Tair change in the TP is elevation dependent.

Corresponding author address: Yanhong Gao, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, 320 Donggang West Rd., Lanzhou, Gansu 730000, China. E-mail: gaoyh@lzb.ac.cn

Abstract

To develop a finescale dataset for the purpose of analyzing historical climatic change over the Tibet Plateau (TP), a high-resolution regional climate simulation for 1979–2011 was conducted using the Weather Research and Forecasting (WRF) Model driven by the ERA-Interim (ERA-Int). This work evaluates the high-resolution (30 km) WRF simulation in terms of annual variation, spatial structure, and 33-yr temporal trends of surface air temperature (Tair) and precipitation (Prec) over the TP, with reference to station observations. Another focus is on the examination of the height–temperature relationship. Inheriting from its forcing, the WRF simulation presents an apparent cold bias in the TP. The cold bias is largely reduced by a lapse rate correction of the simulated surface air temperature with help of the station and model elevations. ERA-Int presents the same sign of Tair and Prec trends as the observations, but with smaller magnitude, especially in the dry season. Compared to its forcing, the WRF simulation improves the simulation of the annual cycles and temporal trends of Tair and Prec in the wet season. In the dry season, however, there is hardly any improvement. The observed Tair presents a downward linear trend in the lapse rate. This feature is examined in the WRF simulation in comparison to ERA-Int. The WRF simulation captures the observed lapse rate and its temporal trend better than ERA-Int. The decreasing lapse rate over time confirms that Tair change in the TP is elevation dependent.

Corresponding author address: Yanhong Gao, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, 320 Donggang West Rd., Lanzhou, Gansu 730000, China. E-mail: gaoyh@lzb.ac.cn
Save
  • Achberger, C., M.-L. Linderson, and D. Chen, 2003: Performance of the Rossby Centre regional atmospheric model in southern Sweden: Comparison of simulated and observed. Theor. Appl. Climatol., 76, 219234, doi:10.1007/s00704-003-0015-6.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., I. Hanssen-Bauer, and D. Chen, 2008: Empirical-Statistical Downscaling. World Scientific, 300 pp.

  • Betts, A. K., S.-Y. Hong, and H.-L. Pan, 1996: Comparison of NCEP–NCAR reanalysis with 1987 FIFE data. Mon. Wea. Rev., 124, 14801498, doi:10.1175/1520-0493(1996)124<1480:CONNRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, D., T. Ou, L. Gong, C.-Y. Xu, W. Li, C.-H. Ho, and W. Qian, 2010: Spatial interpolation of daily precipitation in China: 1951–2005. Adv. Atmos. Sci., 27, 12211232, doi:10.1007/s00376-010-9151-y.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp.

  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, doi:10.1002/qj.493.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2005: Global high resolution versus limited area model climate change projections over Europe: Quantifying confidence level from PRUDENCE results. Climate Dyn., 25, 653670, doi:10.1007/s00382-005-0052-1.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and Coauthors, 2006: Simulations of present and future climates in the western United States with four nested regional climate models. J. Climate, 19, 873895, doi:10.1175/JCLI3669.1.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., I. Rodriguez-Iturbe, and F. Castelli, 1996: Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol., 184, 317, doi:10.1016/0022-1694(95)02965-6.

    • Search Google Scholar
    • Export Citation
  • Fang, J.-Y., and K. Yoda, 1988: Climate and vegetation in China (I). Changes in the altitudinal lapse rate of temperature and distribution of sea level temperature. Ecol. Res., 3, 3751, doi:10.1007/BF02348693.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Z. Zhao, Y. Ding, R. Huang, and F. Giorgi, 2001: Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv. Atmos. Sci., 18, 12241230, doi:10.1007/s00376-001-0036-y.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Xu, Z. Zhao, J. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol., 86, 173185, doi:10.1007/s00704-005-0214-4.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, D. Zhang, J. Wu, F. Giorgi, Z. Ji, and Y. Wang, 2012: Uncertainties in monsoon precipitation projections over China: Results from two high-resolution RCM simulations. Climate Res., 52, 213226, doi:10.3354/cr01084.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Coauthors, 2008: Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. J. Geophys. Res., 113, D20S90, doi:10.1029/2008JD010359.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. A. Vano, C. Zhu, and D. P. Lettenmaier, 2011a: Evaluating climate change over the Colorado River basin using regional climate models. J. Geophys. Res., 116, D13104, doi:10.1029/2010JD015278.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., Y. Xue, W. Peng, H. Kang, and D. Waliser, 2011b: Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv. Atmos. Sci., 28, 10771098, doi:10.1007/s00376-010-0039-7.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, E. P. Salathe, F. Dominguez, B. Nijssen, and D. P. Lettenmaier, 2012: Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change. Geophys. Res. Lett., 39, L09711, doi:10.1029/2012GL051560.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. Cuo, and Y. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 18761893, doi:10.1175/JCLI-D-13-00321.1.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., T. Shippert, and J. Fox, 2006: Physically based global downscaling: Regional evaluation. J. Climate, 19, 429445, doi:10.1175/JCLI3622.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., G. T. Bates, and S. J. Nieman, 1992: Simulation of the arid climate of the southern Great Basin using a regional climate model. Bull. Amer. Meteor. Soc., 73, 18071822, doi:10.1175/1520-0477(1992)073<1807:SOTACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. Colin, and A. Ghassem, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirakuchi, H., and F. Giorgi, 1995: Multi-year present day and 2 × CO2 simulations of monsoon dominated climate over eastern Asia and Japan with a regional climate model nested in a general circulation model. J. Geophys. Res., 100, 21 10521 126, doi:10.1029/95JD01885.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson, 2012: Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514518, doi:10.1038/nature10847.

    • Search Google Scholar
    • Export Citation
  • Ju, L., H. Wang, and D. Jiang, 2007: Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeogr. Palaeoclimatol. Palaeoecol., 248, 376390, doi:10.1016/j.palaeo.2006.12.012.

    • Search Google Scholar
    • Export Citation
  • Kim, J., T. K. Kim, R. W. Arritt, and N. L. Miller, 2002: Impacts of increased atmospheric CO2 on the hydroclimate of the western United States. J. Climate, 15, 19261942, doi:10.1175/1520-0442(2002)015<1926:IOIACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krause, P., S. Biskop, J. Helmschrot, W.-A. Flügel, S. Kang, and T. Gao, 2010: Hydrological system analysis and modelling of the Nam Co basin in Tibet. Adv. Geosci., 27, 2936, doi:10.5194/adgeo-27-29-2010.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., D. Caya, M. Giguere, G. Bergeron, H. Côté, J. P. Blanchet, G. J. Boer, and N. A. McFarlane, 1998: Climate and climate change in western Canada as simulated by the Canadian Regional Climate Model. Atmos.–Ocean, 36, 119167, doi:10.1080/07055900.1998.9649609.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, and X. Bian, 2003a: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal statistics. J. Climate, 16, 18921911, doi:10.1175/1520-0442(2003)016<1892:HOTWUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, J. Han, and J. O. Roads, 2003b: Intercomparison of global reanalyses and regional simulations of cold season water budgets in the western United States. J. Hydrometeor., 4, 10671087, doi:10.1175/1525-7541(2003)004<1067:IOGRAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y.-H. Kuo, and J. Tribbia, 2006: Research needs and directions of regional climate modeling using WRF and CCSM. Bull. Amer. Meteor. Soc., 87, 17471751, doi:10.1175/BAMS-87-12-1747.

    • Search Google Scholar
    • Export Citation
  • Li, S., S. Lv, Y. Gao, and Y. Zhang, 2005: Effect of different horizontal resolution on simulation of precipitation in Qilian Mountain (in Chinese). Plateau Meteor., 24, 496502.

    • Search Google Scholar
    • Export Citation
  • Li, X., L. Wang, D. Chen, K. Yang, B. Xue, and L. Sun, 2013: Near-surface air temperature lapse rates in the mainland China during 1962–2011. J. Geophys. Res. Atmos., 118, 75057515, doi:10.1002/jgrd.50553.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2012: Surface pressure record of Tibetan Plateau warming since the 1870s. Quart. J. Roy. Meteor. Soc., 138, 19992008, doi:10.1002/qj.1948.

    • Search Google Scholar
    • Export Citation
  • Plummer, D., and Coauthors, 2006: Climate and climate change over North America as simulated by the Canadian RCM. J. Climate, 19, 3112–3132, doi:10.1175/JCLI3769.1.

    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, doi:10.1007/s10584-009-9733-9.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://wrf-model.org/wrfadmin/docs/arw_v2.pdf.]

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 31873208, doi:10.1175/JCLI-D-12-00321.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, doi:10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wu, J., and X. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). Chin. J. Geophys., 56, 11021111, doi:10.6038/cjg20130406.

    • Search Google Scholar
    • Export Citation
  • Wu, S., Y. Yin, D. Zheng, and Q. Yang, 2007: Climatic trends over the Tibetan Plateau during 1971–2000. J. Geogr. Sci., 17, 141151, doi:10.1007/s11442-007-0141-7.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123147, doi:10.1007/s00382-008-0487-2.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Gao, 2014: Validation of summer surface air temperature and precipitation simulation over Heihe River Basin. Plateau Meteor., 33, 937946, doi:10.7522/j.issn.1000-0534.2013.00149.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., X. Gao, Y. Shen, C. Xu, Y. Shi, and F. Giorgi, 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763772, doi:10.1007/s00376-009-9029-z.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2013: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys., 51, 525548, doi:10.1002/rog.20023.

    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, N. Pepin, W.-A. Flügel, Y. Yan, H. Behrawan, and J. Huang, 2010: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global Planet. Change, 71, 124133, doi:10.1016/j.gloplacha.2010.01.020.

    • Search Google Scholar
    • Export Citation
  • Yu, E., H. Wang, and J. Sun, 2010: A quick report on a dynamical downscaling simulation over China using the nested model. Atmos. Oceanic Sci. Lett., 3, 325329.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., X. Gao, Z. Bai, and D. Li, 2005: Simulation of climate over Qinghai-Xizang Plateau utilizing RegCM3. Plateau Meteor., 24, 714720.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., X. Gao, L. Ouyang, and W. Dong, 2008: Simulation of present climate over China by a regional climate model. J. Trop. Meteor., 14, 1923.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., V. Dulière, P. W. Mote, and E. P. Salathé, 2009: Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. J. Climate, 22, 55115526, doi:10.1175/2009JCLI2875.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2135 1058 58
PDF Downloads 1273 423 38