Precipitable Water from GPS over the Continental United States: Diurnal Cycle, Intercomparisons with NARR, and Link with Convective Initiation

Basivi Radhakrishna Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Basivi Radhakrishna in
Current site
Google Scholar
PubMed
Close
,
Frédéric Fabry Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Frédéric Fabry in
Current site
Google Scholar
PubMed
Close
,
John J. Braun Constellation Observing System for Meteorology, Ionosphere, and Climate Program Office, UCAR, Boulder, Colorado

Search for other papers by John J. Braun in
Current site
Google Scholar
PubMed
Close
, and
Teresa Van Hove Constellation Observing System for Meteorology, Ionosphere, and Climate Program Office, UCAR, Boulder, Colorado

Search for other papers by Teresa Van Hove in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variation of precipitable water vapor (PW) over the continental United States is examined at various time scales using spatial maps of a column-averaged mixing ratio (CAMR) that is derived from integrated column PW from both observations and reanalysis data. CAMR spatial maps are generated utilizing PW measurements obtained from a network of ground-based global positioning system (GPS) receivers and the North American Regional Reanalysis (NARR) over a time span of 4 yr (February 2009–January 2013). The effect of topography on PW is mitigated by vertically averaging the mixing ratio instead of integrating the absolute humidity. An ordinary kriging interpolation technique is used to generate spatial maps of CAMR. The observed and predicted PW derived by GPS and NARR correlate well with each other at annual and monthly scales. When focusing on its diurnal cycle, moisture peaks in the late afternoon over the Great Plains and late night over the Rockies. It is also found that atmospheric moisture within NARR generally increases in the second half of the UTC day and is adjusted significantly lower when external observations, such as radiosondes, are assimilated into the analysis system. These adjustments in the analysis introduce nonphysical offsets that are not present within the GPS-derived moisture fields. At meso-β and meso-α scales, GPS PW fields can be used as a precursor to forecast convection up to 3 h prior to initiation. As stated previously, the correlation between GPS and NARR is high (>0.98) at monthly and seasonal time scales, but there is poor correlation at time scales less than a day. This indicates that the water budget within NARR is not in proper balance over these short-term time scales. Over the continental United States, daily cycles of PW and precipitation are coupled differently in different areas.

Corresponding author address: Dr. B. Radhakrishna, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal QC H3A 2K6, Canada. E-mail: rakibasivi@gmail.com

Abstract

The variation of precipitable water vapor (PW) over the continental United States is examined at various time scales using spatial maps of a column-averaged mixing ratio (CAMR) that is derived from integrated column PW from both observations and reanalysis data. CAMR spatial maps are generated utilizing PW measurements obtained from a network of ground-based global positioning system (GPS) receivers and the North American Regional Reanalysis (NARR) over a time span of 4 yr (February 2009–January 2013). The effect of topography on PW is mitigated by vertically averaging the mixing ratio instead of integrating the absolute humidity. An ordinary kriging interpolation technique is used to generate spatial maps of CAMR. The observed and predicted PW derived by GPS and NARR correlate well with each other at annual and monthly scales. When focusing on its diurnal cycle, moisture peaks in the late afternoon over the Great Plains and late night over the Rockies. It is also found that atmospheric moisture within NARR generally increases in the second half of the UTC day and is adjusted significantly lower when external observations, such as radiosondes, are assimilated into the analysis system. These adjustments in the analysis introduce nonphysical offsets that are not present within the GPS-derived moisture fields. At meso-β and meso-α scales, GPS PW fields can be used as a precursor to forecast convection up to 3 h prior to initiation. As stated previously, the correlation between GPS and NARR is high (>0.98) at monthly and seasonal time scales, but there is poor correlation at time scales less than a day. This indicates that the water budget within NARR is not in proper balance over these short-term time scales. Over the continental United States, daily cycles of PW and precipitation are coupled differently in different areas.

Corresponding author address: Dr. B. Radhakrishna, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal QC H3A 2K6, Canada. E-mail: rakibasivi@gmail.com
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alber, C., R. Ware, C. Rocken, and F. Solheim, 1997: GPS surveying with 1 mm precision using corrections for atmospheric slant path delay. Geophys. Res. Lett., 24, 18591862, doi:10.1029/97GL01877.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. Anthes, C. Rocken, and R. H. Ware, 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379386, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, J., and T. Van Hove, 2005: Recent improvements in the retrieval of precipitable water vapor. ION GNSS 2005: Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation, Institute of Navigation, 298–301.

  • Brown, D. W., S. J. Clarke, and J. Zabransky, 2002: A regional comparison of GPS atmospheric moisture measurements at Plymouth and Bartlett, New Hampshire. Preprints, Symp. on Observations, Data Assimilation, and Probabilistic Prediction, Orlando, FL, Amer. Meteor. Soc., P2.5. [Available online at https://ams.confex.com/ams/pdfpapers/26296.pdf.]

  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, doi:10.1175/2008JCLI2275.1.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Dach, R., U. Hugentobler, P. Fridez, and M. Meindl, Eds., 2007: Bernese GPS software version 5.0. Astronomical Institute of the University of Bern, Bern, Switzerland, 612 pp. [Available online at http://www.bernese.unibe.ch.]

  • Dai, A., and C. Deser, 1999: Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res., 104, 31 10931 125, doi:10.1029/1999JD900927.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., J. Wang, R. H. Ware, and T. Van Hove, 2002: Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res., 107, 4090, doi:10.1029/2001JD000642.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679, doi:10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20, 15931607, doi:10.1029/RS020i006p01593.

    • Search Google Scholar
    • Export Citation
  • Derks, H., H. K. Baltink, A. van Lammeren, B. Ambrosius, H. van der Marel, and A. Kosters, 1997: GPS water vapour meteorology: Status report. KNMI Publ. WR-97-04, 40 pp. [Available online at http://www.knmi.nl/publications/showAbstract.php?id=4790.]

  • Dow, J. M., R. E. Neilan, and C. Rizos, 2009: The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod., 83, 191198, doi:10.1007/s00190-008-0300-3.

    • Search Google Scholar
    • Export Citation
  • Duan, J., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteor., 35, 830838, doi:10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dumont, D. M., and J. Zabransky, 2001: A comparison of GPS-measured precipitable water at Bartlett, NH with radiosonde measurements in the Northeast. Preprints, 11th Symp. on Meteorological Observations and Instrumentation, Albuquerque, NM, Amer. Meteor. Soc., 245247.

  • Haase, J., M. Ge, H. Vedel, and E. Calais, 2003: Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J. Appl. Meteor., 42, 15471568, doi:10.1175/1520-0450(2003)042<1547:AAVOGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Nahmias, M. H., and J. Zabransky, 2004: A statistical examination and case study of integrated precipitable water (IPW) in northern New England. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land, Seattle, WA, Amer. Meteor. Soc., P1.7. [Available online at https://ams.confex.com/ams/pdfpapers/69621.pdf.]

  • Randel, D. L., T. H. Vonder Haar, M. A. Ringerud, G. L. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77, 12331246, doi:10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rebischung, P., J. Griffiths, J. Ray, R. Schmid, X. Collieux, and B. Garayt, 2012: IGS08: The IGS realization of ITRF2008. GPS Solutions, 16, 483494, doi:10.1007/s10291-011-0248-2.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., R. H. Ware, T. Van Hove, F. Solheim, C. Alber, and J. Johnson, 1993: Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 26312634, doi:10.1029/93GL02935.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., T. Van Hove, and R. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24, 32213224, doi:10.1029/97GL03312.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., S. Sokolovskiy, J. M. Johnson, and D. Hunt, 2001: Improved mapping of tropospheric delays. J. Atmos. Oceanic Technol., 18, 12051213, doi:10.1175/1520-0426(2001)018<1205:IMOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, Geophys. Monogr., Vol. 15, Amer. Geophys. Union, 247–251.

  • Schmid, R., P. Steigenberger, G. Gendt, M. Ge, and M. Rothacher, 2007: Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J. Geod., 81, 781798, doi:10.1007/s00190-007-0148-y.

    • Search Google Scholar
    • Export Citation
  • Surcel, M., M. Berenguer, and I. Zawadzki, 2010: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part I: Methodology and seasonal comparison. Mon. Wea. Rev., 138, 30843106, doi:10.1175/2010MWR3125.1.

    • Search Google Scholar
    • Export Citation
  • Tabios, G. Q., and J. D. Salas, 1985: A comparative analysis of techniques for spatial interpolation of precipitation. J. Amer. Water Resour. Assoc., 21, 365380, doi:10.1111/j.1752-1688.1985.tb00147.x.

    • Search Google Scholar
    • Export Citation
  • Wang, J., W. B. Rossow, and Y. Zhang, 2000: Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset. J. Climate, 13, 30413056, doi:10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677694, doi:10.1175/1520-0477(2000)081<0677:SARNGN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 98 10
PDF Downloads 202 52 9