Impact of Anomalous Northward Oceanic Heat Transport on Global Climate in a Slab Ocean Setting

Blandine L’Hévéder Laboratoire de Météorologie Dynamique, L’Institut Pierre-Simon Laplace, Centre National de la Recherche Scientifiques, Ecole Normale Supérieure, and Université Pierre et Marie Curie, Paris, France

Search for other papers by Blandine L’Hévéder in
Current site
Google Scholar
PubMed
Close
,
Francis Codron Laboratoire de Météorologie Dynamique, L’Institut Pierre-Simon Laplace, Centre National de la Recherche Scientifiques, Ecole Normale Supérieure, and Université Pierre et Marie Curie, Paris, France

Search for other papers by Francis Codron in
Current site
Google Scholar
PubMed
Close
, and
Michael Ghil Atmospheric and Oceanic Sciences Department, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by Michael Ghil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper explores the impact of anomalous northward oceanic heat transport on global climate in a slab ocean setting. To that end, the GCM LMDZ5A of the Laboratoire de Météorologie Dynamique is coupled to a slab ocean, with realistic zonal asymmetries and seasonal cycle. Two simulations with different anomalous surface heating are imposed: 1) uniform heating over the North Atlantic basin and 2) concentrated heating in the Gulf Stream region, with a compensating uniform cooling in the Southern Ocean in both cases. The magnitudes of the heating and of the implied northward interhemispheric heat transport are within the range of current natural variability. Both simulations show global effects that are particularly strong in the tropics, with a northward shift of the intertropical convergence zone (ITCZ) toward the heating anomalies. This shift is accompanied by a northward shift of the storm tracks in both hemispheres. From the comparison between the two simulations with different anomalous surface heating in the North Atlantic, it emerges that the global climate response is nearly insensitive to the spatial distribution of the heating. The cloud response acts as a large positive feedback on the oceanic forcing, mainly because of the low-cloud-induced shortwave anomalies in the extratropics. While previous literature has speculated that the extratropical Q flux may impact the tropics by the way of the transient eddy fluxes, it is explicitly demonstrated here. In the midlatitudes, the authors find a systematic northward shift of the jets, as well as of the associated Ferrel cells, storm tracks, and precipitation bands.

Corresponding author address: Blandine L’Hévéder, Laboratoire de Météorologie Dynamique, Université Paris VI, Tour 45-55 3e étage, Case postale 99, 4 place Jussieu, F 75252 Paris CEDEX 05, France. E-mail: blandine.lheveder@lmd.jussieu.fr

Abstract

This paper explores the impact of anomalous northward oceanic heat transport on global climate in a slab ocean setting. To that end, the GCM LMDZ5A of the Laboratoire de Météorologie Dynamique is coupled to a slab ocean, with realistic zonal asymmetries and seasonal cycle. Two simulations with different anomalous surface heating are imposed: 1) uniform heating over the North Atlantic basin and 2) concentrated heating in the Gulf Stream region, with a compensating uniform cooling in the Southern Ocean in both cases. The magnitudes of the heating and of the implied northward interhemispheric heat transport are within the range of current natural variability. Both simulations show global effects that are particularly strong in the tropics, with a northward shift of the intertropical convergence zone (ITCZ) toward the heating anomalies. This shift is accompanied by a northward shift of the storm tracks in both hemispheres. From the comparison between the two simulations with different anomalous surface heating in the North Atlantic, it emerges that the global climate response is nearly insensitive to the spatial distribution of the heating. The cloud response acts as a large positive feedback on the oceanic forcing, mainly because of the low-cloud-induced shortwave anomalies in the extratropics. While previous literature has speculated that the extratropical Q flux may impact the tropics by the way of the transient eddy fluxes, it is explicitly demonstrated here. In the midlatitudes, the authors find a systematic northward shift of the jets, as well as of the associated Ferrel cells, storm tracks, and precipitation bands.

Corresponding author address: Blandine L’Hévéder, Laboratoire de Météorologie Dynamique, Université Paris VI, Tour 45-55 3e étage, Case postale 99, 4 place Jussieu, F 75252 Paris CEDEX 05, France. E-mail: blandine.lheveder@lmd.jussieu.fr
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baringer, M., and Coauthors, 2013: Meridional overturning circulation and heat transport observations in the Atlantic Ocean [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc.,94 (8), S65–S68.

    • Search Google Scholar
    • Export Citation
  • Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 18471853, doi:10.1175/JCLI-D-11-00329.1.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, X. Liu, D. M. W. Frierson, and D. L. Hartmann, 2013: The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res. Atmos., 118, 5136–5146, doi:10.1002/jgrd.50461.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and V. Ramaswamy, 1996: Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. Part II: Spatially localized perturbations. J. Climate, 9, 27882801, doi:10.1175/1520-0442(1996)009<2788:SOSGCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and M. Ghil, 1995: Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr., 25, 25472568, doi:10.1175/1520-0485(1995)025<2547:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., C. M. Bitz, and J. C. H. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 295–313.

  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., G. Lapeyre, and M. Ghil, 2012: Atmospheric dynamics triggered by an oceanic SST front in a moist quasi-geostrophic model. J. Atmos. Sci., 69, 16171632, doi:10.1175/JAS-D-11-0288.1.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, doi:10.1175/JCLI-D-13-00499.1.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., M. Ghil, and E. Simonnet, 2007: Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 64, 97116, doi:10.1175/JAS3780.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, doi:10.1175/JCLI-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/NGEO1987.

    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., S.-P. Xie, R. Farneti, E. A. Maroon, and D. M. W. Frierson, 2013: Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J. Climate, 26, 46124629, doi:10.1175/JCLI-D-12-00294.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2013: Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dyn., 40, 21672192, doi:10.1007/s00382-012-1411-3.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y., and D. M. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Isemer, H.-J., and L. Hasse, 1987: The Bunker Climatic Atlas of the North Atlantic. Vol. 2, Air–Sea Interactions, Springer-Verlag, 252 pp.

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, and S.-P. Xie, 2014: Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate Dyn., 42, 20332043, doi:10.1007/s00382-013-1863-0.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.

  • Mahajan, S., R. Saravanan, and P. Chang, 2011: The role of the wind–evaporation–sea surface temperature (WES) feedback as a thermodynamic pathway for the equatorward propagation of high-latitude sea ice–induced cold anomalies. J. Climate, 24, 13501361, doi:10.1175/2010JCLI3455.1.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., K. J. Evans, J. J. Hack, and J. E. Truesdale, 2013: Linearity of climate response to increases in black carbon aerosols. J. Climate, 26, 8223–8237, doi:10.1175/JCLI-D-12-00715.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn.,42, 1967–1979, doi:10.1007/s00382-013-1767-z.

  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate, 22, 13291339, doi:10.1175/2008JCLI2362.1.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., C. Deser, A. Hu, A. Timmermann, and S.-P. Xie, 2009: North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways. J. Climate, 22, 14241445, doi:10.1175/2008JCLI2511.1.

    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and D. M. W. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate,27, 3035–3042, doi:10.1175/JCLI-D-13-00691.1.

  • Sherwood, S. C., S. Bony, and J.-L. Dufresnes, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, doi:10.1038/nature12829.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., S. Bony, J.-L. Dufresne, and B. Stevens, 2014: The radiative impact of clouds on the shift of the intertropical convergence zone. Geophys. Res. Lett., 41, 4308–4315, doi:10.1002/2014GL060354.

    • Search Google Scholar
    • Export Citation
  • Wen, C., P. Chang, and R. Saravanan, 2011: Effect of Atlantic meridional overturning circulation on tropical Atlantic variability: A regional coupled model study. J. Climate, 24, 33233343, doi:10.1175/2011JCLI3845.1.

    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, doi:10.1175/JAS-D-12-0226.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, doi:10.1175/2008JCLI2172.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, doi:10.1175/JCLI-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, doi:10.1175/JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., S. M. Kang, and I. M. Held, 2010: Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. J. Climate, 23, 378389, doi:10.1175/2009JCLI3118.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., and B. S. Giese, 2009: Ocean heat transport in Simple Ocean Data Assimilation: Structure and mechanisms. J. Geophys. Res., 114, C11009, doi:10.1029/2008JC005190.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 275 115 11
PDF Downloads 149 43 8