Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea

Yasser Abualnaja * Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Yasser Abualnaja in
Current site
Google Scholar
PubMed
Close
,
Vassilis P. Papadopoulos Hellenic Centre for Marine Research, Anavissos, Greece

Search for other papers by Vassilis P. Papadopoulos in
Current site
Google Scholar
PubMed
Close
,
Simon A. Josey National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Simon A. Josey in
Current site
Google Scholar
PubMed
Close
,
Ibrahim Hoteit Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Ibrahim Hoteit in
Current site
Google Scholar
PubMed
Close
,
Harilaos Kontoyiannis Hellenic Centre for Marine Research, Anavissos, Greece

Search for other papers by Harilaos Kontoyiannis in
Current site
Google Scholar
PubMed
Close
, and
Dionysios E. Raitsos Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom

Search for other papers by Dionysios E. Raitsos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.

Corresponding author address: Yasser Abualnaja, Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: yasser.abualnaja@kaust.edu.sa

Abstract

The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.

Corresponding author address: Yasser Abualnaja, Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: yasser.abualnaja@kaust.edu.sa
Save
  • Ahmad, F., and S. A. R. Sultan, 1989: Surface heat fluxes and their comparison with the oceanic heat flow in the Red Sea. Oceanol. Acta, 12 (1), 3336.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 29632978, doi:10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics in the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res., 50, 23052330, doi:10.1016/S0967-0645(03)00058-4.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., 2009: Rapid warming of large marine ecosystems. Prog. Oceanogr., 81, 207213, doi:10.1016/j.pocean.2009.04.011.

  • Bond, N. A., and M. F. Cronin, 2008: Regional weather patterns during anomalous air–sea fluxes at the Kuroshio Extension Observatory (KEO). J. Climate, 21, 16801697, doi:10.1175/2007JCLI1797.1.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369, doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clifford, M., C. Horton, J. Schmitz, and L. H. Kantha, 1997: An oceanographic nowcast/forecast system for the Red Sea. J. Geophys. Res., 102, 25 10125 122, doi:10.1029/97JC01919.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, J.-J. Luo, T. Yamagata, and G. Madec, 2014: Influence of Indian Ocean dipole and Pacific recharge on following year’s El Niño: Interdecadal robustness. Climate Dyn., 42, 291310, doi:10.1007/s00382-012-1628-1.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2003: Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation. J. Geophys. Res., 108, 32373259, doi:10.1029/2003JC001778.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., and R. Marsh, 2005: Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res., 110, C05008, doi:10.1029/2004JC002521.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., S. Somot, and M. Tsimplis, 2011: Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange. J. Geophys. Res., 116, C02032, doi:10.1029/2010JC006685.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., S. Gulev, and L. Yu, 2013: Exchanges through the ocean surface. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. G. Siedler et al., Eds., Academic Press, 115–140.

  • Kontoyiannis, H., V. Papadopoulos, A. Kazmin, A. Zatsepin, and D. Georgopoulos, 2012: Climatic variability of the sub-surface sea temperatures in the Aegean-Black Sea system and relation to meteorological forcing. Climate Dyn., 39, 15071525, doi:10.1007/s00382-012-1370-8.

    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., 2014: The east Atlantic/west Russia (EA/WR) teleconnection in the North Atlantic: Climate impact and relation to Rossby wave propagation. Climate Dyn., doi:10.1007/s00382-014-2381-4.

    • Search Google Scholar
    • Export Citation
  • Martínez-Asensio, A., M. Marcos, M. N. Tsimplis, D. Gomis, S. A. Josey, and G. Jordà, 2014: Impact of the atmospheric climate modes on Mediterranean sea level variability. Global Planet. Change, 118, 115, doi:10.1016/j.gloplacha.2014.03.007.

    • Search Google Scholar
    • Export Citation
  • Morcos, S. A., 1970: Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Annu. Rev., 8, 73202.

  • Murray, S. P., and W. Johns, 1997: Direct observations of seasonal exchange through the Bab el Mandeb strait. Geophys. Res. Lett., 24, 25572560, doi:10.1029/97GL02741.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, V. P., A. Bartzokas, T. Chronis, D. Georgopoulos, and G. Ferentinos, 2012a: Factors regulating the air–sea heat fluxes in the Aegean Sea. J. Climate, 25, 491508, doi:10.1175/2011JCLI4197.1.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, V. P., S. A. Josey, A. Bartzokas, S. Somot, S. Ruiz, and P. Drakopoulou, 2012b: Large-scale atmospheric circulation favoring deep and intermediate water formation in the Mediterranean Sea. J. Climate, 25, 60796091, doi:10.1175/JCLI-D-11-00657.1.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, V. P., H. Kontoyiannis, S. Ruiz, and N. Zarokanellos, 2012c: Influence of atmospheric circulation on turbulent air-sea heat fluxes over the Mediterranean Sea during winter. J. Geophys. Res., 117, C03044, doi:10.1029/2011JC007455.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, V. P., Y. Abualnaja, S. A. Josey, A. Bower, D. E. Raitsos, H. Kontoyiannis, and I. Hoteit, 2013: Atmospheric forcing of the winter air–sea heat fluxes over the northern Red Sea. J. Climate, 26, 16851701, doi:10.1175/JCLI-D-12-00267.1.

    • Search Google Scholar
    • Export Citation
  • Patzert, W. C., 1974: Wind-induced reversal in Red Sea circulation. Deep-Sea Res. Oceanogr. Abstr., 21, 109121, doi:10.1016/0011-7471(74)90068-0.

    • Search Google Scholar
    • Export Citation
  • Raitsos, D. E., I. Hoteit, P. K. Prihartato, T. Chronis, G. Triantafyllou, and Y. Abualnaja, 2011: Abrupt warming of the Red Sea. Geophys. Res. Lett., 38, L14601, doi:10.1029/2011GL047984.

    • Search Google Scholar
    • Export Citation
  • Rienecker, and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1990: Patterns of low‐frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies. J. Climate, 3, 13641379, doi:10.1175/1520-0442(1990)003<1364:POLFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Sofianos, S. S., and W. E. Johns, 2002: An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean. J. Geophys. Res., 107, 3196, doi:10.1029/2001JC001184.

    • Search Google Scholar
    • Export Citation
  • Sofianos, S. S., and W. E. Johns, 2003: An oceanic general circulation model (OGCM) investigation of the Red Sea circulation: 2. Three dimensional circulation in the Red Sea. J. Geophys. Res., 108, 3066, doi:10.1029/2001JC001185.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12, 26792690, doi:10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 1074–1087, doi:10.1002/joc.2336.

  • Yao, F., I. Hoteit, L. J. Pratt, A. S. Bower, P. Zhai, A. Köhl, and G. Gopalakrishnan, 2014a: Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J. Geophys. Res. Oceans, 119, 22382262, doi:10.1002/2013JC009004.

    • Search Google Scholar
    • Export Citation
  • Yao, F., I. Hoteit, L. J. Pratt, A. S. Bower, A. Köhl, G. Gopalakrishnan, and D. Rivas, 2014b: Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J. Geophys. Res. Oceans, 119, 22632289, doi:10.1002/2013JC009331.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

  • Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 564 258 17
PDF Downloads 349 103 11