Interannual Variation of the South Asian High and Its Relation with Indian and East Asian Summer Monsoon Rainfall

Wei Wei State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Wei Wei in
Current site
Google Scholar
PubMed
Close
,
Renhe Zhang State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, and National Institute of Meteorological Research, Korean Meteorological Administration, Jeju-do, South Korea

Search for other papers by Renhe Zhang in
Current site
Google Scholar
PubMed
Close
,
Min Wen State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Min Wen in
Current site
Google Scholar
PubMed
Close
,
Baek-Jo Kim National Institute of Meteorological Research, Korean Meteorological Administration, Jeju-do, South Korea

Search for other papers by Baek-Jo Kim in
Current site
Google Scholar
PubMed
Close
, and
Jae-Cheol Nam National Institute of Meteorological Research, Korean Meteorological Administration, Jeju-do, South Korea

Search for other papers by Jae-Cheol Nam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A diagnostic analysis reveals that on the interannual time scale the southeast–northwest movement is a dominant feature of the South Asian high (SAH), and it is closely related to the Indian and East Asian summer monsoon rainfall. The southeastward (northwestward) shift of the SAH is closely related to less (more) Indian summer monsoon rainfall and more (less) rainfall in the Yangtze River valley (YRV) over the East Asian summer monsoon region. An anomalous AGCM is utilized to examine the effect of latent heat anomalies associated with the Asian summer monsoon rainfall on the SAH. The negative latent heat anomalies over the northern Indian Subcontinent associated with a weak Indian summer monsoon stimulates an anomalous cyclone to its northwest and an anticyclone to its northeast over the eastern Tibetan Plateau and eastern China in the upper troposphere, which is responsible for the east–west shift of the SAH and more rainfall in the YRV. The positive latent heat release associated with rainfall anomalies in the YRV excites a southward-located anticyclone over eastern China, exerting a feedback effect on the SAH and leading to a southeast–northwest shift of the SAH.

Corresponding author address: Dr. Renhe Zhang, Chinese Academy of Meteorological Sciences, No. 46, Zhong-Guan-Cun South Ave., Haidian District, Beijing 100081, China. E-mail: renhe@cams.cma.gov.cn

Abstract

A diagnostic analysis reveals that on the interannual time scale the southeast–northwest movement is a dominant feature of the South Asian high (SAH), and it is closely related to the Indian and East Asian summer monsoon rainfall. The southeastward (northwestward) shift of the SAH is closely related to less (more) Indian summer monsoon rainfall and more (less) rainfall in the Yangtze River valley (YRV) over the East Asian summer monsoon region. An anomalous AGCM is utilized to examine the effect of latent heat anomalies associated with the Asian summer monsoon rainfall on the SAH. The negative latent heat anomalies over the northern Indian Subcontinent associated with a weak Indian summer monsoon stimulates an anomalous cyclone to its northwest and an anticyclone to its northeast over the eastern Tibetan Plateau and eastern China in the upper troposphere, which is responsible for the east–west shift of the SAH and more rainfall in the YRV. The positive latent heat release associated with rainfall anomalies in the YRV excites a southward-located anticyclone over eastern China, exerting a feedback effect on the SAH and leading to a southeast–northwest shift of the SAH.

Corresponding author address: Dr. Renhe Zhang, Chinese Academy of Meteorological Sciences, No. 46, Zhong-Guan-Cun South Ave., Haidian District, Beijing 100081, China. E-mail: renhe@cams.cma.gov.cn
Save
  • Ashfaq, M., Y. Shi, W. Tung, R. J. Trapp, X. Gao, J. S. Pal, and N. S. Diffenbaugh, 2009: Suppression of South Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett., 36, L01704, doi:10.1029/2008GL036500.

    • Search Google Scholar
    • Export Citation
  • Bansod, S. D., Z. Y. Yin, Z. Lin, and X. Zhang, 2003: Thermal field over Tibetan Plateau and Indian summer monsoon rainfall. Int. J. Climatol., 23, 15891605, doi:10.1002/joc.953.

    • Search Google Scholar
    • Export Citation
  • He, J., M. Wen, L. Wang, and H. Xu, 2006: Characteristics of the onset of the Asian Summer Monsoon and the importance of Asian–Australian “land bridge.” Adv. Atmos. Sci., 23, 951963, doi:10.1007/s00376-006-0951-z.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, G., X. Qu, and K. Hu, 2011: The impact of the tropical Indian Ocean on South Asian high in boreal summer. Adv. Atmos. Sci., 28, 421432, doi:10.1007/s00376-010-9224-y.

    • Search Google Scholar
    • Export Citation
  • Huang, R., J. Chen, L. Wang, and Z. Lin, 2012: Characteristics, processes and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, doi:10.1007/s00376-012-2015-x.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Y. Qian, 2004: Relationship between South Asian high and characteristics of precipitation in mid- and lower- reaches of Yangtze River and North China (in Chinese). Plateau Meteor., 23, 7076, doi:10.3321/j.issn:1000-0534.2004.01.010.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 37773795, doi:10.1175/JCLI3516.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., S. M. Daggupaty, J. Fein, M. Kanamitsu, and J. D. Lee, 1973: Tibetan high and upper tropospheric tropical circulation during northern summer. Bull. Amer. Meteor. Soc., 54, 12341239.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., H. S. Bedi, and M. Subramaniam, 1989: The summer monsoon of 1987. J. Climate, 2, 321340, doi:10.1175/1520-0442(1989)002<0321:TSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, doi:10.1175/JAS3676.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., G. X. Wu, H. Liu, and P. Liu, 2001: Condensation heating of the Asian summer monsoon and the subtropical anticyclone in Eastern Hemisphere. Climate Dyn., 17, 327338, doi:10.1007/s003820000117.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., G. X. Wu, and R. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682698, doi:10.1175/1520-0442(2004)017<0682:RBTSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and Z. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 20582072, doi:10.1175/2008JCLI2444.1.

    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, S., Z. Qian, and Q. Wang, 1982: The climatic and synoptical study about the relationship between the Qinghai-Xizang High Pressure on the 100 mb surface and the flood and drought in east China in summer (in Chinese). Plateau Meteor., 1, 110.

    • Search Google Scholar
    • Export Citation
  • Mason, R. B., and C. E. Anderson, 1963: The development and decay of the 100 mb summertime anticyclone over southern Asia. Mon. Wea. Rev., 91, 312, doi:10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1968: Some Applications of Statistics to Meteorology. The Pennsylvania State University, 224 pp.

  • Parthasarathy, B., K. Rupa Kumar, and D. Kothawale, 1992: Indian summer monsoon rainfall indices: 1871–1990. Meteor. Mag., 121, 174186.

    • Search Google Scholar
    • Export Citation
  • Raman, C. R. V., and Y. P. Rao, 1981: Blocking highs over Asia and monsoon droughts over India. Nature, 289, 271–273, doi:10.1038/289271a0.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., B. Andreas, F. Peter, M.-C. Anja, R. Bruno, and Z. Markus, 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC Data Rep., doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Sontakke, N., G. Pant, and N. Singh, 1993: Construction of all-India summer monsoon rainfall series for the period 1844–1991. J. Climate, 6, 18071811, doi:10.1175/1520-0442(1993)006<1807:COAISM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and F. Zhu, 1964: The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West-Pacific subtropical anticyclone over the Far East (in Chinese). Acta. Meteor. Sin.,34, 385–396.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: Review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., LinHo, Y. Zhang, and M.-M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699710, doi:10.1175/2932.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, and T. Zhou, 2012: Intraseasonal SST variability and air–sea interaction over the Kuroshio Extension region during boreal summer. J. Climate, 25, 16191634, doi:10.1175/JCLI-D-11-00109.1.

    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, and M. Wen, 2012: Meridional variation of South Asian high and its relationship with the summer precipitation over China (in Chinese). J. Appl. Meteor. Sci., 23, 650659, doi:10.3969/j.issn.1001-7313.2012.06.002.

    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, doi:10.1007/s00382-013-1938-y.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Liu, 2003: Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett., 30, 1201, doi:10.1029/2002GL016209.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoon. Int. J. Climatol., 22, 18791895, doi:10.1002/joc.845.

    • Search Google Scholar
    • Export Citation
  • Xue, X., W. Chen, D. Nath, and D. Zhou, 2015: Whether the decadal shift of South Asia High intensity around the late 1970s exists or not. Theor. Appl. Climatol., doi:10.1007/s00704-014-1200-5, in press.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yoo, S.-H., S. Yang, and C.-H. Ho, 2006: Variability of the Indian Ocean sea surface temperature and its impacts on Asian–Australian monsoon climate. J. Geophys. Res., 111, D03108, doi:10.1029/2005JD006001.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and G. Wu, 2001: The large area flood and drought over Yangtze River valley and its relation to the South Asia High (in Chinese). Acta. Meteor. Sin.,59, 569–577, doi:10.3321/j.issn:0577-6619.2001.05.007.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., G. Wu, and Y. F. Qian, 2002: The bimodality of the 100 hPa South Asia High and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733744, doi:10.2151/jmsj.80.733.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2001: Relations of water vapor transports from Indian monsoon with those over East Asia and the summer rainfall in China. Adv. Atmos. Sci., 18, 10051017.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, doi:10.1007/BF02973084.

    • Search Google Scholar
    • Export Citation
  • Zhou, N. F., Y. Yu, and Y. Qian, 2006: Simulations of the 100-hPa South Asian high and precipitation over East Asia with IPCC coupled GCMs. Adv. Atmos. Sci., 23, 375390, doi:10.1007/s00376-006-0375-9.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, doi:10.1175/2008JCLI2527.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2911 1361 111
PDF Downloads 1923 514 68