The Impact of ENSO on the South Atlantic Subtropical Dipole Mode

Regina R. Rodrigues Department of Geosciences, Federal University of Santa Catarina, Florianópolis, Brazil

Search for other papers by Regina R. Rodrigues in
Current site
Google Scholar
PubMed
Close
,
Edmo J. D. Campos Oceanographic Institute, University of São Paulo, São Paulo, Brazil

Search for other papers by Edmo J. D. Campos in
Current site
Google Scholar
PubMed
Close
, and
Reindert Haarsma Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Reindert Haarsma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of El Niño–Southern Oscillation (ENSO) on the South Atlantic subtropical dipole mode (SASD) is investigated using both observations and model simulations. The SASD is the dominant mode of coupled ocean–atmosphere variability in the South Atlantic. This study focuses on austral summer, when both ENSO and SASD peak. It is shown that negative SASD events are associated with central Pacific El Niño events by triggering the Pacific–South American wave train (PSA). The latter resembles the third leading mode of atmospheric variability in the Southern Hemisphere (PSA2) and causes a weakening and meridional shift of the South Atlantic subtropical high, which then generates the negative SASD events. On the other hand, a strengthening of the South Atlantic subtropical high related to central La Niña teleconnections causes positive SASD events. The results herein show that the PSA2, triggered by central Pacific ENSO events, connects the tropical Pacific to the Atlantic. This connection is absent from eastern Pacific ENSO events, which appear to initiate the second leading mode of atmospheric variability in the Southern Hemisphere (PSA1). It is for this reason that previous studies have found weak correlations between ENSO and SASD. These findings can improve the climate prediction of southeastern South America and southern Africa since these regions are affected by sea surface temperature anomalies of both the Pacific and Atlantic Oceans.

Corresponding author address: R. R. Rodrigues, Dept. Geociências, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-970, Brazil. E-mail: regina.rodrigues@ufsc.br

Abstract

The impact of El Niño–Southern Oscillation (ENSO) on the South Atlantic subtropical dipole mode (SASD) is investigated using both observations and model simulations. The SASD is the dominant mode of coupled ocean–atmosphere variability in the South Atlantic. This study focuses on austral summer, when both ENSO and SASD peak. It is shown that negative SASD events are associated with central Pacific El Niño events by triggering the Pacific–South American wave train (PSA). The latter resembles the third leading mode of atmospheric variability in the Southern Hemisphere (PSA2) and causes a weakening and meridional shift of the South Atlantic subtropical high, which then generates the negative SASD events. On the other hand, a strengthening of the South Atlantic subtropical high related to central La Niña teleconnections causes positive SASD events. The results herein show that the PSA2, triggered by central Pacific ENSO events, connects the tropical Pacific to the Atlantic. This connection is absent from eastern Pacific ENSO events, which appear to initiate the second leading mode of atmospheric variability in the Southern Hemisphere (PSA1). It is for this reason that previous studies have found weak correlations between ENSO and SASD. These findings can improve the climate prediction of southeastern South America and southern Africa since these regions are affected by sea surface temperature anomalies of both the Pacific and Atlantic Oceans.

Corresponding author address: R. R. Rodrigues, Dept. Geociências, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-970, Brazil. E-mail: regina.rodrigues@ufsc.br
Save
  • Ambrizzi, T., and B. J. Hoskins, 1997: Stationary Rossby-wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928, doi:10.1002/qj.49712354007.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and L. M. V. Carvalho, 2011: The South Atlantic dipole and variations in the characteristics of the South American monsoon in the WCRP-CMIP3 multi-model simulations. Climate Dyn., 36, 20912102, doi:10.1007/s00382-010-0836-9.

    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., L. M. V. Carvalho, C. Jones, and M. S. Reboita, 2014: Precipitation over eastern South America and the South Atlantic sea surface temperature during neutral ENSO periods. Climate Dyn., 42, 15531568, doi:10.1007/s00382-013-1832-7.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., G. R. Simpkins, and M. H. England, 2014: Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Climate, 28, 56–65, doi:10.1175/JCLI-D-14-00438.1.

    • Search Google Scholar
    • Export Citation
  • De Almeida, R. A. F., P. Nobre, R. J. Haarsma, and E. J. D. Campos, 2007: Negative ocean–atmosphere feedback in the South Atlantic convergence zone. Geophys. Res. Lett., 34, L18809, doi:10.1029/2007GL030401.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. Steig, D. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. Steig, D. Battisti, and J. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, doi:10.1175/JCLI-D-11-00523.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, M. E., and V. R. Barros, 2002: Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J. Climate, 15, 33943410, doi:10.1175/1520-0442(2002)015<3394:MLLCAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fauchereau, N., S. Trzaska, Y. Richard, P. Roucou, and P. Camberlin, 2003: Sea-surface temperature co-variability in the southern Atlantic and Indian Oceans and its connections with atmospheric circulation in the Southern Hemisphere. Int. J. Climatol., 23, 663677, doi:10.1002/joc.905.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., J. Pal, and F. Giorgi, 2007: Connection between spring conditions and peak summer monsoon rainfall in South America: Role of soil moisture, surface temperature, and topography in eastern Brazil. J. Climate, 20, 59295945, doi:10.1175/2007JCLI1684.1.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., E. J. D. Campos, W. Hazeleger, C. Severijns, A. R. Piola, and F. Molteni, 2005: Dominant modes of variability in the South Atlantic: A study with a hierarchy of ocean–atmosphere models. J. Climate, 18, 17191735, doi:10.1175/JCLI3370.1.

    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2005: Ocean model diagnosis of interannual coevolving SST variability in the South Indian and South Atlantic Oceans. J. Climate, 18, 28642882, doi:10.1175/JCLI3422.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parameterization. I: Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191, doi:10.1007/s00382-002-0268-2.

    • Search Google Scholar
    • Export Citation
  • Morioka, Y., T. Tozuka, and T. Yamagata, 2011: On the growth and decay of the subtropical dipole mode in the South Atlantic. J. Climate, 24, 55385554, doi:10.1175/2011JCLI4010.1.

    • Search Google Scholar
    • Export Citation
  • Morioka, Y., T. Tozuka, S. Masson, P. Terray, J.-J. Luo, and T. Yamagata, 2012: Subtropical dipole modes simulated in a coupled general circulation model. J. Climate, 25, 40294047, doi:10.1175/JCLI-D-11-00396.1.

    • Search Google Scholar
    • Export Citation
  • Morioka, Y., S. Masson, P. Terray, C. Prodhomme, S. K. Behera, and Y. Masumoto, 2014: Role of tropical SST variability on the formation of subtropical dipoles. J. Climate, 27, 44864507, doi:10.1175/JCLI-D-13-00506.1.

    • Search Google Scholar
    • Export Citation
  • Muza, M. N., L. M. V. Carvalho, C. Jones, and B. Liebmann, 2009: Intraseasonal and interannual variability of extreme dry and wet events over southeastern South America and subtropical Atlantic during the austral summer. J. Climate, 22, 16821699, doi:10.1175/2008JCLI2257.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 2000: Interannual and interdecadal variability of the South Atlantic convergence zone. Mon. Wea. Rev., 128, 29472957, doi:10.1175/1520-0493(2000)128<2947:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., R. J. Haarsma, E. J. D. Campos, and T. Ambrizzi, 2011: The impacts of inter–El Niño variability on the tropical Atlantic and Northeast Brazil climate. J. Climate, 24, 34023422, doi:10.1175/2011JCLI3983.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., Y. Okumura, and C. Deser, 2012: Observed Antarctic climate variability and tropical linkages. J. Climate, 25, 40484066, doi:10.1175/JCLI-D-11-00273.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and W. Hazeleger, 2003: Coupled variability and air–sea interaction in the South Atlantic Ocean. Climate Dyn., 21, 559571, doi:10.1007/s00382-003-0348-y.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. Sen Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27, 28612885, doi:10.1175/JCLI-D-13-00437.1.

    • Search Google Scholar
    • Export Citation
  • Tedeschi, R. G., I. F. A. Cavalcanti, and A. M. Grimm, 2013: Influences of two types of ENSO on South American precipitation. Int. J. Climatol., 33, 13821400, doi:10.1002/joc.3519.

    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1997: Atmosphere–ocean coupled variability in the South Atlantic. J. Climate, 10, 29042920, doi:10.1175/1520-0442(1997)010<2904:AOCVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vera, C., G. Silvestre, V. Barros, and A. Carril, 2004: Differences in El Niño response over the Southern Hemisphere. J. Climate, 17, 17411753, doi:10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vigaud, N., Y. Richard, M. Rouault, and N. Fauchereau, 2009: Moisture transport between the South Atlantic Ocean and southern Africa: Relationships with summer rainfall and associated dynamics. Climate Dyn., 32, 113123, doi:10.1007/s00382-008-0377-7.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., D. H. Bromwich, K. M. Hines, and S. H. Wang, 2014: El Niño flavors and their simulated impacts on atmospheric circulation in the high-southern latitudes. J. Climate, 27, 89348955, doi:10.1175/JCLI-D-14-00296.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M. H. Kwon, and B. P. Kirtman, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, J.-J. Luo, and T. Yamagata, 2014: Predictability of the subtropical dipole modes in a coupled ocean–atmosphere model. Climate Dyn., 42, 12911308, doi:10.1007/s00382-013-1704-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1259 564 46
PDF Downloads 979 355 35