MJO Intensification with Warming in the Superparameterized CESM

Nathan P. Arnold Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Nathan P. Arnold in
Current site
Google Scholar
PubMed
Close
,
Mark Branson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Mark Branson in
Current site
Google Scholar
PubMed
Close
,
Zhiming Kuang Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Zhiming Kuang in
Current site
Google Scholar
PubMed
Close
,
David A. Randall Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
, and
Eli Tziperman Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Eli Tziperman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO) is the dominant mode of tropical intraseasonal variability, characterized by an eastward-propagating envelope of convective anomalies with a 30–70-day time scale. Here, the authors report changes in MJO activity across coupled simulations with a superparameterized version of the NCAR Community Earth System Model. They find that intraseasonal OLR variance nearly doubles between a preindustrial control run and a run with 4×CO2. Intraseasonal precipitation increases at a rate of roughly 10% per 1 K of warming, and MJO events become 20%–30% more frequent. Moist static energy (MSE) budgets of composite MJO events are calculated for each scenario, and changes in budget terms are used to diagnose the physical processes responsible for changes in the MJO with warming. An increasingly positive contribution from vertical advection is identified as the most likely cause of the enhanced MJO activity. A decomposition links the changes in vertical advection to a steepening of the mean MSE profile, which is a robust thermodynamic consequence of warming. Surface latent heat flux anomalies are a significant sink of MJO MSE at 1×CO2, but this damping effect is reduced in the 4×CO2 case. This work has implications for organized tropical variability in past warm climates as well as future global warming scenarios.

Corresponding author address: Nathan Arnold, Colorado State University, 200 West Lake St., 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: nathan@atmos.colostate.edu

Abstract

The Madden–Julian oscillation (MJO) is the dominant mode of tropical intraseasonal variability, characterized by an eastward-propagating envelope of convective anomalies with a 30–70-day time scale. Here, the authors report changes in MJO activity across coupled simulations with a superparameterized version of the NCAR Community Earth System Model. They find that intraseasonal OLR variance nearly doubles between a preindustrial control run and a run with 4×CO2. Intraseasonal precipitation increases at a rate of roughly 10% per 1 K of warming, and MJO events become 20%–30% more frequent. Moist static energy (MSE) budgets of composite MJO events are calculated for each scenario, and changes in budget terms are used to diagnose the physical processes responsible for changes in the MJO with warming. An increasingly positive contribution from vertical advection is identified as the most likely cause of the enhanced MJO activity. A decomposition links the changes in vertical advection to a steepening of the mean MSE profile, which is a robust thermodynamic consequence of warming. Surface latent heat flux anomalies are a significant sink of MJO MSE at 1×CO2, but this damping effect is reduced in the 4×CO2 case. This work has implications for organized tropical variability in past warm climates as well as future global warming scenarios.

Corresponding author address: Nathan Arnold, Colorado State University, 200 West Lake St., 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: nathan@atmos.colostate.edu
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Araligidad, N. M., and E. D. Maloney, 2008: Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett., 35, L04815, doi:10.1029/2007GL032746.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, doi:10.1175/JCLI-D-12-00272.1.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., M. Branson, M. A. Burt, D. S. Abbot, Z. Kuang, D. A. Randall, and E. Tziperman, 2014: The effects of explicit atmospheric convection at high CO2. Proc. Natl. Acad. Sci. USA, 111, 10 94310 948, doi:10.1073/pnas.1407175111.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. Sobel, 2008: Poleward-propagating intraseasonal monsoon disturbances in an intermediate-complexity axisymmetric model. J. Atmos. Sci., 65, 470489, doi:10.1175/2007JAS2339.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296, doi:10.1175/2009JAS3030.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 33273349, doi:10.1175/JAS-D-13-0240.1.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, L11701, doi:10.1029/2010GL043468.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Dowsett, H. J., A. M. Haywood, P. J. Valdes, M. M. Robinson, D. J. Lunt, D. J. Hill, D. K. Stoll, and K. M. Foley, 2011: Sea surface temperatures of the mid-Piacenzian warm period: A comparison of PRISM3 and HadCM3. Palaeogeogr. Palaeoclimatol. Palaeoecol., 309, 8391, doi:10.1016/j.palaeo.2011.03.016.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, doi:10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. M. Brierley, K. T. Lawrence, Z. Liu, P. S. Dekens, and A. C. Ravelo, 2013: Patterns and mechanisms of early Pliocene warmth. Nature, 496, 4352, doi:10.1038/nature12003.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 1669–1679, doi:10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847864, doi:10.1175/1520-0469(2003)060<0847:MLCSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952, doi:10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., A. Bentamy, J. A. Carton, and R. T. Pinker, 2009: Intraseasonal latent heat flux based on satellite observations. J. Climate, 22, 45394556, doi:10.1175/2009JCLI2901.1.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, doi:10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47, 22272240, doi:10.1175/1520-0469(1990)047<2227:ACSOOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550, doi:10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, doi:10.1175/JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345364, doi:10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2006: Changes in the activity of the Madden–Julian oscillation during 1958–2004. J. Climate, 19, 63536370, doi:10.1175/JCLI3972.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2011: Will global warming modify the activity of the Madden–Julian oscillation? Quart. J. Roy. Meteor. Soc., 137, 544552, doi:10.1002/qj.765.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589, doi:10.1175/3238.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, and I.-S. Kang, 2011: A mechanism denial study on the Madden-Julian Oscillation. J. Adv. Model. Earth Syst.,3, M12007, doi:10.1029/2011MS000081.

  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. Maloney, 2011: The intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., and A. J. Matthews, 2009: Response of the West African monsoon to the Madden–Julian oscillation. J. Climate, 22, 40974116, doi:10.1175/2009JCLI2773.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why Are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363, doi:10.1175/1520-0469(1999)056<1353:WATCZW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. Hendon, and J. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401412.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309, doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J., G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, and S. D. Schubert, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Liu, P., T. Li, B. Wang, M. Zhang, J.-J. Luo, Y. Masumoto, X. Wang, and E. Roeckner, 2013: MJO change with A1B global warming estimated by the 40-km ECHAM5. Climate Dyn., 41, 10091023, doi:10.1007/s00382-012-1532-8.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2002: An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15, 964982, doi:10.1175/1520-0442(2002)015<0964:AIOCLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling the tropical intraseasonal oscillation. J. Climate, 17, 43684386, doi:10.1175/JCLI-3212.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S.-P. Xie, 2013: Sensitivity of tropical intraseasonal variability to the pattern of climate warming. J. Adv. Model. Earth Syst., 5, 3247, doi:10.1029/2012MS000171.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst.,2, doi:10.3894/JAMES.2010.2.5.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542.

  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, doi:10.1126/science.283.5404.950.

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, doi:10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., and K. R. Thompson, 2012: A reconstruction of Madden–Julian oscillation variability from 1905 to 2008. J. Climate, 25, 19962019, doi:10.1175/JCLI-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., J. Bhate, O. P. Sreejith, and H. R. Hatwar, 2011: Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Climate Dyn., 36, 4155, doi:10.1007/s00382-009-0634-4.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and R. C. J. Somerville, 2009: Assessing the diurnal cycle of precipitation in a multi-scale climate model. J. Adv. Model. Earth Syst., 1, doi:10.3894/JAMES.2009.1.12.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, doi:10.1175/JAS-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84,15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., N. Rayner, T. Smith, D. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, J. J., B. Stevens, and T. Crueger, 2013: Madden-Julian oscillation as simulated by the MPI Earth System Model: Over the last and into the next millennium. J. Adv. Model. Earth Syst., 5, 7184, doi:10.1029/2012MS000180.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609, doi:10.1002/qj.49712555411.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden-Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2, (2), doi:10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Stan, C., M. Khairoutdinov, C. A. DeMott, V. Krishnamurthy, D. M. Straus, D. A. Randall, I. J. L. Kinter, and J. Shukla, 2010: An ocean-atmosphere climate simulation with an embedded cloud resolving model. Geophys. Res. Lett., 37, L01702, doi:10.1029/2009GL040822.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2014: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.

    • Search Google Scholar
    • Export Citation
  • Subramanian, A., M. Jochum, A. J. Miller, R. Neale, H. Seo, D. Waliser, and R. Murtugudde, 2014: The MJO and global warming: A study in CCSM4. Climate Dyn., 42, 2019–2031, doi:10.1007/s00382-013-1846-1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, C., N. Sato, A. Seiki, K. Yoneyama, and R. Shirooka, 2011: Projected future change of MJO and its extratropical teleconnection in East Asia during the northern winter simulated in IPCC AR4 models. SOLA, 7, 201204, doi:10.2151/sola.2011-051.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312, doi:10.1175/2009JAS3081.1.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and B. Farrell, 2009: Pliocene equatorial temperature: Lessons from atmospheric superrotation. Paleoceanography, 24, PA1101, doi:10.1029/2008PA001652.

    • Search Google Scholar
    • Export Citation
  • Wara, M. W., A. C. Ravelo, and M. L. Delaney, 2005: Permanent El Niño-like conditions during the Pliocene warm period. Science, 309, 758762, doi:10.1126/science.1112596.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO vs AO. J. Meteor. Soc. Japan, 84, 221241, doi:10.2151/jmsj.84.221.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, doi:10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Wang, 2006: Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592, doi:10.1007/s00382-006-0148-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. G., M. Pagani, and Z. Liu, 2014: A 12-million-year temperature history of the tropical Pacific Ocean. Science, 344, 8487, doi:10.1126/science.1246172.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 827 301 41
PDF Downloads 582 282 42