Summertime Moisture Transport to the Southern South American Altiplano: Constraints from In Situ Measurements of Water Vapor Isotopic Composition

Joseph Galewsky Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico

Search for other papers by Joseph Galewsky in
Current site
Google Scholar
PubMed
Close
and
Kimberly Samuels-Crow Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico

Search for other papers by Kimberly Samuels-Crow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Austral summer transport of water vapor to the southern South American Altiplano is investigated using in situ measurements of water vapor isotopic composition collected from 1 November 2012 to 10 February 2013 on the Chajnantor Plateau in the Chilean Andes. Onset of the wet season in December was associated with an increase in mixing ratios from an average of 1500 ppmv during the winter dry season to 5400 ppmv in early December. Water vapor isotopes δD and δ18O increased from dry season averages of −235‰ and −31‰, respectively, to wet season averages of −142‰ and −17‰, reaching as high as −70‰ and −17‰, respectively. The highest water vapor δ values were close to those measured in coastal settings, suggesting little condensation during transport to the site. About 5% of the wet season data have δ values that are lower than expected for Rayleigh distillation and are associated with high relative humidity (>75%), easterly winds, and periods of low outgoing longwave radiation over the Altiplano, consistent with moistening by deep convection. The remainder of the data have δ values that are greater than expected for Rayleigh distillation, up to 250‰ above the Rayleigh curve. These data are consistent with mixing between very dry air and moist air from the boundary layer. The data show intraseasonal variability coherently linked to the position of the Bolivian high, with moist air associated with a southward displacement in the Bolivian high. The humidity over the southern Altiplano during the wet season reflects a balance among advective drying, advective moistening with little condensation, and convective moistening.

Corresponding author address: Joseph Galewsky, Dept. of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131. E-mail: galewsky@unm.edu

Abstract

Austral summer transport of water vapor to the southern South American Altiplano is investigated using in situ measurements of water vapor isotopic composition collected from 1 November 2012 to 10 February 2013 on the Chajnantor Plateau in the Chilean Andes. Onset of the wet season in December was associated with an increase in mixing ratios from an average of 1500 ppmv during the winter dry season to 5400 ppmv in early December. Water vapor isotopes δD and δ18O increased from dry season averages of −235‰ and −31‰, respectively, to wet season averages of −142‰ and −17‰, reaching as high as −70‰ and −17‰, respectively. The highest water vapor δ values were close to those measured in coastal settings, suggesting little condensation during transport to the site. About 5% of the wet season data have δ values that are lower than expected for Rayleigh distillation and are associated with high relative humidity (>75%), easterly winds, and periods of low outgoing longwave radiation over the Altiplano, consistent with moistening by deep convection. The remainder of the data have δ values that are greater than expected for Rayleigh distillation, up to 250‰ above the Rayleigh curve. These data are consistent with mixing between very dry air and moist air from the boundary layer. The data show intraseasonal variability coherently linked to the position of the Bolivian high, with moist air associated with a southward displacement in the Bolivian high. The humidity over the southern Altiplano during the wet season reflects a balance among advective drying, advective moistening with little condensation, and convective moistening.

Corresponding author address: Joseph Galewsky, Dept. of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131. E-mail: galewsky@unm.edu
Save
  • Ammann, C., B. Jenny, K. Kammer, and B. Messerli, 2001: Late Quaternary Glacier response to humidity changes in the arid Andes of Chile (18–29°S). Palaeogeogr. Palaeoclimatol. Palaeoecol., 172, 313326, doi:10.1016/S0031-0182(01)00306-6.

    • Search Google Scholar
    • Export Citation
  • Betancourt, J., C. Latorre, J. Rech, and J. Quade, 2000: A 22,000-year record of monsoonal precipitation from northern Chile’s Atacama Desert. Science, 289, 15421546, doi:10.1126/science.289.5484.1542.

    • Search Google Scholar
    • Export Citation
  • Blossey, P., Z. Kuang, and D. M. Romps, 2010: Isotopic composition of water in the tropical tropopause layer in cloud-resolving simulations of an idealized tropical circulation. J. Geophys. Res.,115, D24309, doi:10.1029/2010JD014554.

  • Bobst, A., T. Lowenstein, T. Jordan, L. Godfrey, T. Ku, and S. Luo, 2001: A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol., 173, 2142, doi:10.1016/S0031-0182(01)00308-X.

    • Search Google Scholar
    • Export Citation
  • Bony, S., C. Risi, and F. Vimeux, 2008: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean–Global Atmosphere–Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations. J. Geophys. Res., 113, D19305, doi:10.1029/2008JD009942.

    • Search Google Scholar
    • Export Citation
  • Couhert, A., T. Schneider, J. Li, D. E. Waliser, and A. M. Tompkins, 2010: The maintenance of the relative humidity of the subtropical free troposphere. J. Climate, 23, 390403, doi:10.1175/2009JCLI2952.1.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and R. D. Garreaud, 2005: Moisture variability over the South American Altiplano during the South American Low Level Jet Experiment (SALLJEX) observing season. J. Geophys. Res., 110, D22105, doi:10.1029/2005JD006152.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., and J. V. Hurley, 2010: An advection-condensation model for subtropical water vapor isotopic ratios. J. Geophys. Res., 115, D16116, doi:10.1029/2009JD013651.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., M. Strong, and Z. D. Sharp, 2007: Measurements of water vapor D/H ratios from Mauna Kea, Hawaii, and implications for subtropical humidity dynamics. Geophys. Res. Lett.,34, L22808, doi:10.1029/2007GL031330.

  • Galewsky, J., C. Rella, Z. Sharp, K. Samuels, and D. Ward, 2011: Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile. Geophys. Res. Lett., 38, L17803, doi:10.1029/2011GL048557.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921, doi:10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon. Wea. Rev., 128, 33373346, doi:10.1175/1520-0493(2000)128<3337:IVOMAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and P. Aceituno, 2001: Interannual rainfall variability over the South American Altiplano. J. Climate, 14, 27792789, doi:10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, and A. Clement, 2003: The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 522, doi:10.1016/S0031-0182(03)00269-4.

    • Search Google Scholar
    • Export Citation
  • Gat, J., 1996: Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci., 24, 225262, doi:10.1146/annurev.earth.24.1.225.

    • Search Google Scholar
    • Export Citation
  • Gat, J., B. Klein, Y. Kushnir, W. Roether, H. Wernli, R. Yam, and A. Shemesh, 2003: Isotope composition of air moisture over the Mediterranean Sea: An index of the air–sea interaction pattern. Tellus, 55B, 953965, doi:10.1034/j.1600-0889.2003.00081.x.

    • Search Google Scholar
    • Export Citation
  • Geyh, M. A., L. Nuņez, U. Schotterer, and M. Grosjean, 1999: Radiocarbon reservoir effect and the timing of the late-Glacial/Early Holocene humid phase in the Atacama Desert (northern Chile). Quat. Res., 52, 143153, doi:10.1006/qres.1999.2060.

    • Search Google Scholar
    • Export Citation
  • Giovanelli, R., and J. Darling, 2001: The optical/infrared astronomical quality of high Atacama sites. II. Infrared characteristics. Publ. Astron. Soc. Pac., 113, 803813, doi:10.1086/322136.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, G., and Coauthors, 2003: Coherent isotope history of Andean ice cores over the last century. Geophys. Res. Lett., 30, 1179, doi:10.1029/2002GL014870.

    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., J. Galewsky, J. Worden, and D. Noone, 2012: A test of the advection-condensation model for subtropical water vapor using stable isotopologue observations from Mauna Loa Observatory, Hawaii. J. Geophys. Res., 117, D19118, doi:10.1029/2012JD018029.

    • Search Google Scholar
    • Export Citation
  • Johnson, L., Z. Sharp, and J. Galewsky, 2011: Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: Application to measurements from Mauna Loa Observatory, Hawaii. Rapid Commun. Mass Spectrom., 25, 608616, doi:10.1002/rcm.4894.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., 1988: Pentad outgoing longwave radiation climatology for the South American sector. Rev. Bras. Meteor., 3, 217231.

  • Kull, C., and M. Grosjean, 2000: Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate-glacier model. J. Glaciol., 46, 622632, doi:10.3189/172756500781832611.

    • Search Google Scholar
    • Export Citation
  • Kurita, N., 2011: Origin of Arctic water vapor during the ice-growth season. Geophys. Res. Lett., 38, L02709, doi:10.1029/2010GL046064.

  • Lenters, J., and K. H. Cook, 1997: On the origin of the Bolivian high and related circulation features of the South American climate. J. Atmos. Sci., 54, 656677, doi:10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, M., Z. Kuang, and P. N. Blossey, 2014: A moisture budget perspective of the amount effect. Geophys. Res. Lett., 41, 13291335, doi:10.1002/2013GL058302.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Noone, D., 2012: Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere. J. Climate, 25, 44764494, doi:10.1175/JCLI-D-11-00582.1.

    • Search Google Scholar
    • Export Citation
  • Noone, D., J. Galewsky, Z. D. Sharp, and J. Worden, 2011: Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory. J. Geophys. Res., 116, D33113, doi:10.1029/2011JD015773.

    • Search Google Scholar
    • Export Citation
  • Quade, J., J. A. Rech, C. Latorre, J. L. Betancourt, E. Gleeson, and M. T. K. Kalin, 2007: Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, northern Chile. Geochim. Cosmochim. Acta, 71, 37723795, doi:10.1016/j.gca.2007.02.016.

    • Search Google Scholar
    • Export Citation
  • Risi, C., S. Bony, and F. Vimeux, 2008: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306, doi:10.1029/2008JD009943.

    • Search Google Scholar
    • Export Citation
  • Samuels-Crow, K. E., J. Galewsky, D. R. Hardy, Z. D. Sharp, J. Worden, and C. Braun, 2014a: Upwind convective influences on the isotopic composition of atmospheric water vapor over the tropical Andes. J. Geophys. Res. Atmos., 119, 7051–7063, doi:10.1002/2014JD021487.

    • Search Google Scholar
    • Export Citation
  • Samuels-Crow, K. E., J. Galewsky, Z. D. Sharp, and K. J. Dennis, 2014b: Deuterium-excess in subtropical free troposphere water vapor: Continuous measurements from the Chajnantor Plateau, northern Chile. Geophys. Res. Lett., 41, 86528659, doi:10.1002/2014GL062302.

    • Search Google Scholar
    • Export Citation
  • Sayres, D. S., and Coauthors, 2010: Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere. J. Geophys. Res., 115, D00J20, doi:10.1029/2009JD013100.

    • Search Google Scholar
    • Export Citation
  • Steen-Larsen, H. C., and Coauthors, 2013: Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos. Chem. Phys., 13, 48154828, doi:10.5194/acp-13-4815-2013.

    • Search Google Scholar
    • Export Citation
  • Steen-Larsen, H. C., and Coauthors, 2014: Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements. Atmos. Chem. Phys., 14, 77417756, doi:10.5194/acp-14-7741-2014.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., E. Mosley-Thompson, and K. Henderson, 2000: Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. J. Quat. Sci., 15, 377394, doi:10.1002/1099-1417(200005)15:4<377::AID-JQS542>3.0.CO;2-L.

    • Search Google Scholar
    • Export Citation
  • Uemura, R., Y. Matsui, and K. Yoshimura, 2008: Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J. Geophys. Res.,113, D19114, doi:10.1029/2008JD010209.

  • Vuille, M., 1999: Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol., 19, 15791600, doi:10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., and M. Werner, 2005: Stable isotopes in precipitation and the South American summer monsoon and ENSO variability: Observations and model results. Climate Dyn., 25, 401413, doi:10.1007/s00382-005-0049-9.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., D. Hardy, C. Braun, and F. Keimig, 1998: Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama Ice Cap, Bolivia. J. Geophys. Res.,103, 11 191–11 204, doi:10.1029/98JD00681.

  • Wootten, A., and A. R. Thompson, 2009: The Atacama Large Millimeter/Submillimeter Array. Proc. IEEE, 97, 14631471, doi:10.1109/JPROC.2009.2020572.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 134 18
PDF Downloads 196 65 14