Effects of Localized Grid Refinement on the General Circulation and Climatology in the Community Atmosphere Model

Colin M. Zarzycki Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Colin M. Zarzycki in
Current site
Google Scholar
PubMed
Close
,
Christiane Jablonowski Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
,
Diana R. Thatcher Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Diana R. Thatcher in
Current site
Google Scholar
PubMed
Close
, and
Mark A. Taylor Sandia National Laboratories, Albuquerque, New Mexico

Search for other papers by Mark A. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using the spectral element (SE) dynamical core within the National Center for Atmospheric Research–Department of Energy Community Atmosphere Model (CAM), a regionally refined nest at 0.25° (~28 km) horizontal resolution located over the North Atlantic is embedded within a global 1° (~111 km) grid. A 23-yr simulation using Atmospheric Model Intercomparison Project (AMIP) protocols and default CAM, version 5, physics is compared to an identically forced run using the global 1° (~111 km) grid without refinement. The addition of a refined patch over the Atlantic basin does not noticeably affect the global circulation. In the area where the refinement is located, large-scale precipitation increases with the higher resolution. This increase is partly offset by a decrease in precipitation resulting from convective parameterizations, although total precipitation is also slightly higher at finer resolutions. Equatorial waves are not significantly impacted when traversing multiple grid spacings. Despite the grid transition region bisecting northern Africa, local zonal jets and African easterly wave activity are highly similar in both simulations. The frequency of extreme precipitation events increases with resolution, although this increase is restricted to the refined patch. Topography is better resolved in the nest as a result of finer grid spacing. The spatial patterns of variables with strong orographic forcing (such as precipitation, cloud, and precipitable water) are improved with local refinement. Additionally, dynamical features, such as wind patterns, associated with steep terrain are improved in the variable-resolution simulation when compared to the uniform coarser run.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Colin M. Zarzycki, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: zarzycki@ucar.edu

Abstract

Using the spectral element (SE) dynamical core within the National Center for Atmospheric Research–Department of Energy Community Atmosphere Model (CAM), a regionally refined nest at 0.25° (~28 km) horizontal resolution located over the North Atlantic is embedded within a global 1° (~111 km) grid. A 23-yr simulation using Atmospheric Model Intercomparison Project (AMIP) protocols and default CAM, version 5, physics is compared to an identically forced run using the global 1° (~111 km) grid without refinement. The addition of a refined patch over the Atlantic basin does not noticeably affect the global circulation. In the area where the refinement is located, large-scale precipitation increases with the higher resolution. This increase is partly offset by a decrease in precipitation resulting from convective parameterizations, although total precipitation is also slightly higher at finer resolutions. Equatorial waves are not significantly impacted when traversing multiple grid spacings. Despite the grid transition region bisecting northern Africa, local zonal jets and African easterly wave activity are highly similar in both simulations. The frequency of extreme precipitation events increases with resolution, although this increase is restricted to the refined patch. Topography is better resolved in the nest as a result of finer grid spacing. The spatial patterns of variables with strong orographic forcing (such as precipitation, cloud, and precipitable water) are improved with local refinement. Additionally, dynamical features, such as wind patterns, associated with steep terrain are improved in the variable-resolution simulation when compared to the uniform coarser run.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Colin M. Zarzycki, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: zarzycki@ucar.edu
Save
  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, doi:10.1175/JCLI-D-13-00387.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Boyle, J., and S. A. Klein, 2010: Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys. Res., 115, D23113, doi:10.1029/2010JD014262.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caian, M., and J.-F. Geleyn, 1997: Some limits to the variable-mesh solution and comparison with the nested-LAM solution. Quart. J. Roy. Meteor. Soc., 123, 743766, doi:10.1002/qj.49712353911.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 19932018, doi:10.1175/1520-0493(2000)128<1993:SOOTWJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, doi:10.1175/2007JCLI1494.1.

    • Search Google Scholar
    • Export Citation
  • Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26, 3142, doi:10.1177/1094342011428141.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, doi:10.1007/s00382-011-1127-9.

    • Search Google Scholar
    • Export Citation
  • Duffy, P., B. Govindasamy, J. Iorio, J. Milovich, K. Sperber, K. Taylor, M. Wehner, and S. Thompson, 2003: High-resolution simulations of global climate, part 1: Present climate. Climate Dyn., 21, 371390, doi:10.1007/s00382-003-0339-z.

    • Search Google Scholar
    • Export Citation
  • Evans, K. J., P. H. Lauritzen, S. K. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia, 2013: AMIP simulation with the CAM4 spectral element dynamical core. J. Climate, 26, 689709, doi:10.1175/JCLI-D-11-00448.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2014: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, and J. L. McGregor, 2006: Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J. Geophys. Res.,111, D16104, doi:10.1029/2005JD006520.

  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, doi:10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N. Levy, 2014: The spectral element method (SEM) on variable-resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Geosci. Model Dev., 7, 28032816, doi:10.5194/gmd-7-2803-2014.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, doi:10.1029/2010RG000345.

  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, doi:10.1175/MWR-D-11-00201.1.

    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2014: Global-to-regional nested-grid climate simulations in the GFDL high-resolution atmosphere model. J. Climate, 27, 4890–4910, doi:10.1175/JCLI-D-13-00596.1.

    • Search Google Scholar
    • Export Citation
  • Holbach, H. M., and M. A. Bourassa, 2014: The effects of gap-wind-induced vorticity, the monsoon trough, and the ITCZ on east Pacific tropical cyclogenesis. Mon. Wea. Rev., 142, 13121325, doi:10.1175/MWR-D-13-00218.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., R. C. Oehmke, and Q. F. Stout, 2009: Block-structured adaptive meshes and reduced grids for atmospheric general circulation models. Philos. Trans. Royal Soc. London, A367, 44974522, doi:10.1098/rsta.2009.0150.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res.,117, D14105, doi:10.1029/2011JD017237; Corrigendum, 118, 11087, doi:10.1002/jgrd.50864.

  • Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173199, doi:10.1029/1999RG900002.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., T. L. Schneider, P. J. Rasch, M. C. Barth, and J. Wong, 2000: Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 105, 14411457, doi:10.1029/1999JD900495.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys.,47, RG2003, doi:10.1029/2008RG000266.

  • Laprise, R., and Coauthors, 2008: Challenging some tenets of regional climate modelling. Meteor. Atmos. Phys., 100, 322, doi:10.1007/s00703-008-0292-9.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., J. Bacmeister, M. A. Taylor, and R. B. Neale, 2012: New CAM (NSF-DOE Community Atmosphere Model) topography generation software: CAM5.2. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A53C-0157.

  • Levy, M., J. Overfelt, and M. A. Taylor, 2013: A variable resolution spectral element dynamical core in the Community Atmosphere Model. Tech. Note 2013-0697J, Sandia National Laboratories, Albuquerque, NM, 25 pp.

  • Li, F., W. D. Collins, M. F. Wehner, D. L. Williamson, J. G. Olson, and C. Algieri, 2011: Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus, 63A, 884892, doi:10.1111/j.1600-0870.2011.00544.x.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, doi:10.5194/gmd-5-709-2012.

    • Search Google Scholar
    • Export Citation
  • Lorant, V., and J. Royer, 2001: Sensitivity of equatorial convection to horizontal resolution in aquaplanet simulations with a variable-resolution GCM. Mon. Wea. Rev., 129, 27302745, doi:10.1175/1520-0493(2001)129<2730:SOECTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, doi:10.1175/JCLI-D-11-00346.1.

    • Search Google Scholar
    • Export Citation
  • McDonald, A., 2003: Transparent boundary conditions for the shallow-water equations: Testing in a nested environment. Mon. Wea. Rev., 131, 698705, doi:10.1175/1520-0493(2003)131<0698:TBCFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, doi:10.1002/2013JD021152.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and K. Veljovic, 2013: Limited area NWP and regional climate modeling: A test of the relaxation vs Eta lateral boundary conditions. Meteor. Atmos. Phys., 119, 116, doi:10.1007/s00703-012-0217-5.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., M. A. Taylor, R. D. Nair, P. H. Lauritzen, H. M. Tufo, and J. J. Tribbia, 2011: Evaluation of the HOMME dynamical core in the aquaplanet configuration of NCAR CAM4: Rainfall. J. Climate, 24, 40374055, doi:10.1175/2011JCLI3860.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010a: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp. [Available online at www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Neale, R. B., and Coauthors, 2010b: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp. [Available online at www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.]

  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • O’Brien, T. A., F. Li, W. D. Collins, S. A. Rauscher, T. D. Ringler, M. A. Taylor, S. M. Hagos, and R. L. Leung, 2013: Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J. Climate, 26, 93139333, doi:10.1175/JCLI-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Ohfuchi, W., and Coauthors, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the earth simulator: Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator, 1, 834.

    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., T. D. Ringler, W. C. Skamarock, and A. A. Mirin, 2013: Exploring a global multiresolution modeling approach using aquaplanet simulations. J. Climate, 26, 24322452, doi:10.1175/JCLI-D-12-00154.1.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ringler, T., L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dyn., 58, 475498, doi:10.1007/s10236-008-0157-2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rougier, J., D. M. H. Sexton, J. M. Murphy, and D. Stainforth, 2009: Analyzing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. J. Climate, 22, 35403557, doi:10.1175/2008JCLI2533.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2013: The contribution of African easterly waves to monsoon precipitation in the CMIP3 ensemble. J. Geophys. Res., 118, 35903609, doi:10.1002/jgrd.50363.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., 2011: Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Lecture Notes in Computational Science and Engineering, Vol. 80, Springer, 357–380.

  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, doi:10.1016/j.jcp.2010.04.008.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92108, doi:10.1006/jcph.1996.5554.

    • Search Google Scholar
    • Export Citation
  • Thomas, S., and R. Loft, 2005: The NCAR spectral element climate dynamical core: Semi-implicit Eulerian formulation. J. Sci. Comput., 25, 307322, doi:10.1007/s10915-004-4646-2.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: A stretched icosahedral grid by a new grid transformation. J. Meteor. Soc. Japan, 86A, 107119, doi:10.2151/jmsj.86A.107.

    • Search Google Scholar
    • Export Citation
  • Tuller, S. E., 1968: World distribution of mean monthly and annual precipitable water. Mon. Wea. Rev., 96, 785797, doi:10.1175/1520-0493(1968)096<0785:WDOMMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2011: A direct method for constructing refined regions in unstructured conforming triangular–hexagonal computational grids: Application to OLAM. Mon. Wea. Rev., 139, 39233937, doi:10.1175/MWR-D-11-00021.1.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst.,6, 980–997, doi:10.1002/2013MS000276.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, version3. Tellus, 60A, 848862, doi:10.1111/j.1600-0870.2008.00339.x.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, doi:10.1002/qj.1992.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, doi:10.1002/2014MS000352.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014a: Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, doi:10.1175/MWR-D-13-00179.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014b: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 54815503, doi:10.1175/JCLI-D-14-00004.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., J. J. Bates, and R. W. Reynolds, 2006: Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett., 33, L17714, doi:10.1029/2006GL027086.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283, doi:10.1175/JAS-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 506 167 10
PDF Downloads 334 122 10