• Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., , T. Iguchi, , H. Kumagai, , and K. Okamoto, 1997: Rain type classification algorithm for TRMM Precipitation Radar. Proc. IEEE Int. Conf. on Geoscience and Remote Sensing Symp. 1997, Singapore, Republic of Singapore, Institute of Electrical and Electronics Engineers, 16331635.

  • Awaka, J., , T. Iguchi, , and K. Okamoto, 2007: Rain type classification algorithm. Measuring Precipitation from Space, V. Levizzani, P. Bauer, and F. Turk, Eds., Vol. 28, Springer Netherlands, 151–173, doi:10.1007/978-1-4020-5835-6_17.

  • Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., , R. Tomas, , J. M. Dennis, , D. B. Chelton, , N. G. Loeb, , and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291, doi:10.1175/2010JCLI3665.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and et al. , 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , M. H. Freilich, , and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517, doi:10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., , and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118, doi:10.2151/jmsj.80.99.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61, 18371858, doi:10.1175/1520-0469(2004)061<1837:QLESOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frenger, I., , N. Gruber, , R. Knutti, , and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, doi:10.1038/ngeo1863.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., , and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357377, doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hashizume, H., , S.-P. Xie, , M. Fujiwara, , M. Shiotani, , T. Watanabe, , Y. Tanimoto, , W. T. Liu, , and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations over the eastern equatorial Pacific. J. Climate, 15, 33793393, doi:10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., , M. J. McPhaden, , and J. M. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 15001506, doi:10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , D. C. Wilton, , and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kilpatrick, T., , N. Schneider, , and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 16981718, doi:10.1175/JCLI-D-13-00101.1.

    • Search Google Scholar
    • Export Citation
  • Koseki, S., , and M. Watanabe, 2010: Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio Extension. J. Climate, 23, 24922507, doi:10.1175/2009JCLI2915.1.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., , S. Minobe, , and S.-P. Xie, 2010: Precipitation response to the Gulf Stream in an atmospheric GCM. J. Climate, 23, 36763698, doi:10.1175/2010JCLI3261.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, J.-W., , S.-P. Zhang, , and S.-P. Xie, 2013: Two types of surface wind response to the East China Sea Kuroshio front. J. Climate, 26, 86168627, doi:10.1175/JCLI-D-12-00092.1.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., , and C. S. Bretherton, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev., 132, 883896, doi:10.1175/1520-0493(2004)132<0883:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGauley, M., , C. Zhang, , and N. A. Bond, 2004: Large-scale characteristics of the atmospheric boundary layer in the Eastern Pacific cold tongue–ITCZ region. J. Climate, 17, 39073920, doi:10.1175/1520-0442(2004)017<3907:LCOTAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , A. Kuwano-Yoshida, , N. Komori, , S.-P. Xie, , and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , M. Miyashita, , A. Kuwano-Yoshida, , H. Tokinaga, , and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, doi:10.1175/2010JCLI3359.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., , and R. He, 2012: Effect of the Gulf Stream on winter extratropical cyclone outbreaks. Atmos. Sci. Lett., 13, 311316, doi:10.1002/asl.400.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., , and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its Extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 14041412, doi:10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25, 15441569, doi:10.1175/JCLI-D-11-00121.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402353, doi:10.1175/2780.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , S. K. Esbensen, , and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, doi:10.1175/JCLI3415.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2010a: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281, doi:10.1175/2009JCLI2613.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , S. K. Esbensen, , N. Thum, , R. M. Samelson, , and D. B. Chelton, 2010b: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581, doi:10.1175/2009JCLI2662.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, doi:10.1175/JCLI-D-11-00230.1.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , T. M. Smith, , C. Liu, , D. B. Chelton, , K. S. Casey, , and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., , S. Medina & , and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NECP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , E. D. Skyllingstad, , D. B. Chelton, , S. K. Esbensen, , L. W. O’Neill, , and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566, doi:10.1175/JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., , and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, doi:10.1175/BAMS-88-12-1965.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., , S. Minobe, , T. Asai, , and M. Inatsu, 2012: Influence of the Kuroshio in the East China Sea on the early summer (baiu) rain. J. Climate, 25, 66276645, doi:10.1175/JCLI-D-11-00727.1.

    • Search Google Scholar
    • Export Citation
  • Shimada, T., , and S. Minobe, 2011: Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys. Res. Lett., 38, L06704, doi:10.1029/2010GL046625.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Skyllingstad, E. D., , D. Vickers, , L. Mahrt, , and R. Samelson, 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219237, doi:10.1007/s10546-006-9127-8.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., , S.-P. Xie, , and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J.  Climate, 16, 37233741, doi:10.1175/1520-0442(2003)016<3723:NSOART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., , S.-P. Xie, , Y. Wang, , S. K. Esbensen, , and D. Vickers, 2005: Numerical simulation of boundary layer structure and cross-equatorial flow in the eastern Pacific. J. Atmos. Sci., 62, 18121830, doi:10.1175/JAS3433.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Song, Q., , P. Cornillon, , and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111, C12006, doi:10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Song, Q., , D. B. Chelton, , S. K. Esbensen, , N. Thum, , and L. W. O’Neill, 2009: Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Climate, 22, 146164, doi:10.1175/2008JCLI2488.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 37853801, doi:10.1175/JCLI4234.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , Y. Tanimoto, , and S.-P. Xie, 2005: SST-induced surface wind variations over the Brazil–Malvinas confluence: Satellite and in situ observations. J. Climate, 18, 34703482, doi:10.1175/JCLI3485.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., and et al. , 2006: Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure. Geophys. Res. Lett., 33, L04703, doi:10.1029/2005GL025102.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , Y. Tanimoto, , S.-P. Xie, , T. Sampe, , H. Tomita, , and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260, doi:10.1175/2009JCLI2763.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , S.-P. Xie, , and A. S. Fischer, 2004: Ocean–atmosphere covariability in the western Arabian Sea. J. Climate, 17, 12131224, doi:10.1175/1520-0442(2004)017<1213:OCITWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , T. P. Mitchell, , and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Smith, , and Q. Jiang, 1990: Spatial patterns of atmosphere–ocean interaction in the northern winter. J. Climate, 3, 990998, doi:10.1175/1520-0442(1990)003<0990:SPOAOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , and D. K. Smith, 1999: A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104, 11 49911 514, doi:10.1029/98JC02148.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , J. Hafner, , Y. Tanimoto, , W. T. Liu, , H. Tokinaga, , and H. Xu, 2002: Bathymetric effects on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophys. Res. Lett., 29, 2228, doi:10.1029/2002GL015884.

    • Search Google Scholar
    • Export Citation
  • Xu, H., , H. Tokinaga, , and S.-P. Xie, 2010: Atmospheric effects of the Kuroshio large meander during 2004–05. J. Climate, 23, 47044714, doi:10.1175/2010JCLI3267.1.

    • Search Google Scholar
    • Export Citation
  • Xu, H., , M. Xu, , S.-P. Xie, , and Y. Wang, 2011: Deep atmospheric response to the spring Kuroshio over the East China Sea. J. Climate, 24, 49594972, doi:10.1175/JCLI-D-10-05034.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and E. A. Smith, 2008: Convective–stratiform precipitation variability at seasonal scale from 8 yr of TRMM observations: Implications for multiple modes of diurnal variability. J. Climate, 21, 40874114, doi:10.1175/2008JCLI2096.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S. P., , J. W. Liu, , and X. G. Meng, 2010: The effect of the East China Sea Kuroshio Front on the marine atmospheric boundary layer. J. Ocean Univ. China, 9, 210218, doi:10.1007/s11802-010-1761-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 3
PDF Downloads 44 44 1

Atmospheric Responses to Kuroshio SST Front in the East China Sea under Different Prevailing Winds in Winter and Spring

View More View Less
  • 1 Key Laboratory of Meteorological Disaster, and College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Atmospheric responses to the Kuroshio SST front in the East China Sea under different prevailing winds are examined using high-resolution observations and numerical modeling. Satellite data reveal a significant in-phase relationship between SST and surface wind speed, indicative of ocean-to-atmosphere influence. The atmospheric response varies according to the relative surface wind direction with respect to the SST front orientation. Under the alongfront condition, low (high) SLP anomalies are found on the warmer (colder) flank of the front, accompanied by surface wind convergence (divergence). Enhanced precipitation and frequent cumulus convection appear over the warm Kuroshio, suggesting an atmospheric response extending into the free troposphere. Under the cross-front condition, when the air blows from cold to warm (warm to cold) SST, divergence (convergence) is located directly over the SST front, and its magnitude is proportional to the downwind SST gradient. Under such prevailing winds, the SST front has little effect on the SLP and precipitation.

The Weather Research and Forecasting (WRF) Model is used to investigate the mechanism responsible for the atmospheric adjustment. The results show that under the alongfront condition, large temperature and pressure perturbations in the boundary layer are caused by SST gradients, while stability and turbulent mixing are less affected. By contrast, under the cross-front condition, the perturbations of temperature and pressure are small and shifted downstream, while the SST gradient exerts stronger impact on vertical mixing. The modeling results confirm that the pressure adjustment mechanism contributes more to the atmospheric response under alongfront prevailing winds, while the vertical mixing mechanism dominates the atmospheric adjustment under cross-front winds.

Corresponding author address: Dr. Haiming Xu, College of Atmospheric Sciences, Nanjing University of Information Science and Technology, 219 Ning Liu Rd., Nanjing 210044, China. E-mail: haimingx@gmail.com

Abstract

Atmospheric responses to the Kuroshio SST front in the East China Sea under different prevailing winds are examined using high-resolution observations and numerical modeling. Satellite data reveal a significant in-phase relationship between SST and surface wind speed, indicative of ocean-to-atmosphere influence. The atmospheric response varies according to the relative surface wind direction with respect to the SST front orientation. Under the alongfront condition, low (high) SLP anomalies are found on the warmer (colder) flank of the front, accompanied by surface wind convergence (divergence). Enhanced precipitation and frequent cumulus convection appear over the warm Kuroshio, suggesting an atmospheric response extending into the free troposphere. Under the cross-front condition, when the air blows from cold to warm (warm to cold) SST, divergence (convergence) is located directly over the SST front, and its magnitude is proportional to the downwind SST gradient. Under such prevailing winds, the SST front has little effect on the SLP and precipitation.

The Weather Research and Forecasting (WRF) Model is used to investigate the mechanism responsible for the atmospheric adjustment. The results show that under the alongfront condition, large temperature and pressure perturbations in the boundary layer are caused by SST gradients, while stability and turbulent mixing are less affected. By contrast, under the cross-front condition, the perturbations of temperature and pressure are small and shifted downstream, while the SST gradient exerts stronger impact on vertical mixing. The modeling results confirm that the pressure adjustment mechanism contributes more to the atmospheric response under alongfront prevailing winds, while the vertical mixing mechanism dominates the atmospheric adjustment under cross-front winds.

Corresponding author address: Dr. Haiming Xu, College of Atmospheric Sciences, Nanjing University of Information Science and Technology, 219 Ning Liu Rd., Nanjing 210044, China. E-mail: haimingx@gmail.com
Save