• Alvarez-Ramirez, J., , J. Alvarez, , L. Dagdug, , E. Rodriguez, , and J. C. Echeverria, 2008: Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years. Physica A,387, 3629–3640, doi:10.1016/j.physa.2008.02.051.

  • Battisti, D. S., , U. S. Bhatt, , and M. A. Alexander, 1995: A modeling study of the interannual variability in the wintertime North Atlantic Ocean. J. Climate, 8, 30673083, doi:10.1175/1520-0442(1995)008<3067:AMSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beran, J., 1994: Statistics for Long-Memory Processes. Monographs on Statistics and Applied Probability, Vol. 61. Chapman and Hall/CRC Press, 315 pp.

    • Search Google Scholar
    • Export Citation
  • Blender, R., , and K. Fraedrich, 2003: Long time memory in global warming simulations. Geophys. Res. Lett., 30, 1769, doi:10.1029/2003GL017666.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2011: Decadal potential predictability of twenty-first century climate. Climate Dyn., 36, 11191133, doi:10.1007/s00382-010-0747-9.

    • Search Google Scholar
    • Export Citation
  • Bunde, A., , J. F. Eichner, , S. Havlin, , E. Koscielny-Bunde, , H. J. Schellnhuber, , and D. Vyushin, 2004: Comment on “Scaling of atmosphere and ocean temperature correlations in observations and climate models.” Phys. Rev. Lett., 92, 039801, doi:10.1103/PhysRevLett.92.039801.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , and M. A. Cane, 2008: El Niño prediction and predictability. J. Comput. Phys., 227, 36253640, doi:10.1016/j.jcp.2007.05.014.

    • Search Google Scholar
    • Export Citation
  • Chen, X., , G. X. Lin, , and Z. T. Fu, 2007: Long-range correlations in daily relative humidity fluctuations: A new index to characterize the climate regions over China. Geophys. Res. Lett.,34, L07804, doi:10.1029/2006GL027755.

  • Ciasto, L. M., , and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 12441259, doi:10.1175/2007JCLI1809.1.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., , and D. W. J. Thompson, 2009: Observational evidence of reemergence in the extratropical Southern Hemisphere. J. Climate, 22, 14461453, doi:10.1175/2008JCLI2545.1.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., , M. A. Alexander, , C. Deser, , and M. H. England, 2011: On the persistence of cold-season SST anomalies associated with the annular modes. J. Climate, 24, 25002515, doi:10.1175/2010JCLI3535.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., , S. Manabe, , and R. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, doi:10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , S. P. Xie, , and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , S. L. Harper, , S. G. Philander, , B. Winter, , and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84, 911919, doi:10.1175/BAMS-84-7-911.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., , and R. Blender, 2003: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett.,90, 108501, doi:10.1103/PhysRevLett.90.108501.

  • Frauen, C., , and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett.,39, L02706, doi:10.1029/2011GL050520.

  • Gan, Z., , Y. Yan, , and Y. Qi, 2007: Scaling analysis of the sea surface temperature anomaly in the South China Seas. J. Atmos. Oceanic Technol., 24, 681687, doi:10.1175/JTECH1981.1.

    • Search Google Scholar
    • Export Citation
  • Ge, E., , and Y. Leung, 2013: Detection of crossover time scales in multifractal detrended fluctuation analysis. J. Geogr. Syst., 15, 115147, doi:10.1007/s10109-012-0169-9.

    • Search Google Scholar
    • Export Citation
  • Govindan, R., , D. Vyushin, , A. Bunde, , S. Brenner, , S. Havlin, , and H.-J. Schellnhuber, 2002: Global climate models violate scaling of the observed atmospheric variability. Phys. Rev. Lett.,89, 028501, doi:10.1103/PhysRevLett.89.028501.

  • Griffies, S. M., , and K. Bryan, 1997: Predictability of North Atlantic multidecadal climate variability. Science, 275, 181184, doi:10.1126/science.275.5297.181.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , and S. Sugimoto, 2004: “Reemergence” areas of winter sea surface temperature anomalies in the world’s oceans. Geophys. Res. Lett.,31, L10303, doi:10.1029/2004GL019904.

  • Heneghan, C., , and G. McDarby, 2000: Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev., 62E, 61036110.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., , J. D. Neelin, , and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science, 264, 7072, doi:10.1126/science.264.5155.70.

    • Search Google Scholar
    • Export Citation
  • Kantelhardt, J., , E. Koscielny-Bunde, , H. Rego, , S. Havlin, , and A. Bunde, 2001: Detecting long-range correlations with detrended fluctuation analysis. Physica A,295, 441–454, doi:10.1016/S0378-4371(01)00144-3.

  • Kantelhardt, J., , S. A. Zschiegner, , E. Koscielny-Bunde, , S. Havlin, , A. Bunde, , and H. E. Stanley, 2002: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A,316, 87–114, doi:10.1016/S0378-4371(02)01383-3.

  • Kantelhardt, J., , E. Koscielny-Bunde, , D. Rybski, , P. Braun, , A. Bunde, , and S. Havlin, 2006: Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res.,111, D01106, doi:10.1029/2005JD005881.

  • Kerr, R., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841986, doi:10.1126/science.288.5473.1984.

  • Kim, H. J., , M. P. Fay, , E. J. Feuer, , and D. N. Midthune, 2000: Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med., 19, 335351.

    • Search Google Scholar
    • Export Citation
  • Király, A., , and I. M. Jánosi, 2005: Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia. Meteor. Atmos. Phys., 88, 119128, doi:10.1007/s00703-004-0078-7.

    • Search Google Scholar
    • Export Citation
  • Leung, Y., 2010: Knowledge Discovery in Spatial Data. Advances in Spatial Sciences, Springer-Verlag, 360 pp.

  • Lin, G., , X. Chen, , and Z. Fu, 2007: Temporal–spatial diversities of long-range correlation for relative humidity over china. Physica A,383, 585–594, doi:10.1016/j.physa.2007.04.059.

  • Monettia, R. A., , S. Havlina, , and A. Bundeb, 2003: Long-term persistence in the sea surface temperature fluctuations. Physica A,320, 581–589, doi:10.1016/S0378-4371(02)01662-X.

  • Movahed, M. S., , G. Jafari, , F. Ghasemi, , S. Rahvar, , and M. R. R. Tabar, 2006: Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech.,2006, P02003, doi:10.1088/1742-5468/2006/02/P02003.

  • Park, S. S., , M. A. Alexander, , and C. Deser, 2006: The impact of cloud radiative feedback, remote ENSO forcing, and entrainment on the persistence of North Pacific sea surface temperature anomalies. J. Climate, 19, 62436261, doi:10.1175/JCLI3957.1.

    • Search Google Scholar
    • Export Citation
  • Peng, C. K., , S. V. Buldyrev, , S. Havlin, , M. Simons, , H. E. Stanley, , and A. L. Goldberger, 1994: Mosaic organization of DNA nucleotides. Phys. Rev., 49E, 16851689.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rybski, D., , A. Bunde, , and H. von Storch, 2008: Long-term memory in 1000-year simulated temperature records. J. Geophys. Res.,113, D02106, doi:10.1029/2007JD008568.

  • Schlesinger, M. E., , and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., , and K. Hanawa, 2005: Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys. Res. Lett.,32, L01606, doi:10.1029/2004GL021410.

  • Varotsos, C., , M. Efstathiou, , and C. Tzanis, 2009: Scaling behaviour of the global tropopause. Atmos. Chem. Phys., 9, 677683, doi:10.5194/acp-9-677-2009.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. G. Wu, , and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and M. Kimoto, 2000: On the persistence of decadal SST anomalies in the North Atlantic. J. Climate, 13, 30173028, doi:10.1175/1520-0442(2000)013<3017:OTPODS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weber, R. O., , and P. Talkner, 2001: Spectra and correlations of climate data from days to decades. J. Geophys. Res., 106, 20 13120 144, doi:10.1029/2001JD000548.

    • Search Google Scholar
    • Export Citation
  • Witt, A., , and B. D. Malamud, 2013: Quantification of long-range persistence in geophysical time series: Conventional and benchmark-based improvement techniques. Surv. Geophys., 34, 541651, doi:10.1007/s10712-012-9217-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and E. Ge, 2013: Temporal scaling behaviour of sea-level change in Hong Kong: Multi-fractal temporally weighted de-trended fluctuation analysis. Global Planet. Change, 100, 362370, doi:10.1016/j.gloplacha.2012.11.012.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., , and Y. Leung, 2010: Multifractal temporally weighted detrended fluctuation analysis and its application in the analysis of scaling behavior in temperature series. J. Stat. Mech., 2010, P06021, doi:10.1088/1742-5468/2010/06/P06021.

    • Search Google Scholar
    • Export Citation
  • Zhu, X. H., , K. Fraedrich, , Z. Y. Liu, , and R. Blender, 2010: A demonstration of long-term memory and climate predictability. J. Climate, 23, 50215029, doi:10.1175/2010JCLI3370.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 15
PDF Downloads 31 31 14

Scaling Behaviors of Global Sea Surface Temperature

View More View Less
  • 1 Department of Geography and Resource Management and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong, China
  • | 2 Department of Geography and Resource Management, Institute of Future Cities, and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong, China
  • | 3 School of Mathematics and Computational Science, Xiangtan University, Hunan, China
  • | 4 Key Laboratory of Meteorological Disaster, Ministry of Education, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Temporal scaling properties of the monthly sea surface temperature anomaly (SSTA) in global ocean basins are examined by the power spectrum and detrended fluctuation analysis methods. Analysis results show that scaling behaviors of the SSTA in most ocean basins (e.g., global average, South Pacific, eastern and western tropical Pacific, tropical Indian Ocean, and tropical Atlantic) are separated into two distinct regimes by a common crossover time scale of 52 months (i.e., 4.3 yr). It is suggested that this crossover is modulated by the El Niño/La Niña–Southern Oscillation (ENSO), indicating different scaling properties at different time scales. The SSTA time series is nonstationary and antipersistent at the small scale (i.e., crossover). It is, however, stationary and long range correlated at the large scale (i.e., crossover). For both time scales, scaling behaviors of SSTA are heterogeneously distributed over the ocean, and the fluctuation of SSTA intensifies with decreasing latitude. Stronger fluctuation appears over the tropical regions (e.g., central-eastern tropical Pacific, tropical Atlantic, tropical Indian Ocean, and South China Sea), which are directly or indirectly linked to ENSO. Weaker fluctuation and stronger persistence are found in mid- and high-latitude areas, coinciding with the “reemergence” areas.

Corresponding author address: Yee Leung, Department of Geography and Resource Management, Institute of Future Cities, and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong, China. E-mail: yeeleung@cuhk.edu.hk

Abstract

Temporal scaling properties of the monthly sea surface temperature anomaly (SSTA) in global ocean basins are examined by the power spectrum and detrended fluctuation analysis methods. Analysis results show that scaling behaviors of the SSTA in most ocean basins (e.g., global average, South Pacific, eastern and western tropical Pacific, tropical Indian Ocean, and tropical Atlantic) are separated into two distinct regimes by a common crossover time scale of 52 months (i.e., 4.3 yr). It is suggested that this crossover is modulated by the El Niño/La Niña–Southern Oscillation (ENSO), indicating different scaling properties at different time scales. The SSTA time series is nonstationary and antipersistent at the small scale (i.e., crossover). It is, however, stationary and long range correlated at the large scale (i.e., crossover). For both time scales, scaling behaviors of SSTA are heterogeneously distributed over the ocean, and the fluctuation of SSTA intensifies with decreasing latitude. Stronger fluctuation appears over the tropical regions (e.g., central-eastern tropical Pacific, tropical Atlantic, tropical Indian Ocean, and South China Sea), which are directly or indirectly linked to ENSO. Weaker fluctuation and stronger persistence are found in mid- and high-latitude areas, coinciding with the “reemergence” areas.

Corresponding author address: Yee Leung, Department of Geography and Resource Management, Institute of Future Cities, and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong, China. E-mail: yeeleung@cuhk.edu.hk
Save