• Ardhuin, F., and et al. , 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, doi:10.1175/2010JPO4324.1.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., , J. Tournadre, , P. Queffeulou, , F. Girard-Ardhuin, , and F. Collard, 2011: Observation and parameterization of small icebergs: Drifting breakwaters in the southern ocean. Ocean Modell., 39, 405410, doi:10.1016/j.ocemod.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Bidlot, J.-R., 2012: Present status of wave forecasting at ECMWF. Proc. ECMWF Workshop on Ocean Waves, Reading, United Kingdom, 42 pp. [Available online at http://nwmstest.ecmwf.int/newsevents/meetings/workshops/2012/Ocean_Waves/presentations/Bidlot.pdf.]

  • Charles, E., , D. Idier, , P. Delecluse, , M. Déqué, , and G. Le Cozannet, 2012: Climate change impact on waves in the Bay of Biscay, France. Ocean Dyn., 62, 831848, doi:10.1007/s10236-012-0534-8.

    • Search Google Scholar
    • Export Citation
  • Cruz, J., 2008: Ocean Wave Energy: Current Status and Future Perspectives. Springer-Verlag, 431 pp.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., , D. J. Lorenz, , D. J. Vimont, , and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twenty-first-century projections. J. Climate, 26, 49304946, doi:10.1175/JCLI-D-12-00359.1.

    • Search Google Scholar
    • Export Citation
  • Dobrynin, M., , J. Murawsky, , and S. Yang, 2012: Evolution of the global wind wave climate in CMIP5 experiments. Geophys. Res. Lett., 39, L18606, doi:10.1029/2012GL052843.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., , W. N. Meier, , and J. R. Norris, 2014: A spurious jump in the satellite record: Has Antarctic sea ice expansion been overestimated? Cryosphere, 8, 12891296, doi:10.5194/tc-8-1289-2014.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., , I. M. Held, , S.-J. Lin, , and X. L. Wang, 2013: Ocean warming effect on surface gravity wave climate change for the end of the twenty-first century. J. Climate, 26, 60466066, doi:10.1175/JCLI-D-12-00410.1.

    • Search Google Scholar
    • Export Citation
  • Gulev, S., , and V. Grigorieva, 2004: Last century changes in ocean wind wave height from global visual wave data. Geophys. Res. Lett., 31, L24302, doi:10.1029/2004GL021040.

    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., , C. Green, , R. J. Nicholls, , and J. Corfee-Morlot, 2013: Future flood losses in major coastal cities. Nat. Climate Change, 3, 802806, doi:10.1038/nclimate1979.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., , J. A. Church, , and J. R. Hunter, 2010: Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol., 30, 475491, doi:10.1002/joc.1900.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., , X. L. Wang, , R. Weisse, , and V. R. Swail, 2012: Advancing wind-waves climate science: The COWCLIP project. Bull. Amer. Meteor. Soc., 93, 791796, doi:10.1175/BAMS-D-11-00184.1.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., , Y. Fan, , N. Mori, , A. Semedo, , and X. Wang, 2013a: Projected changes in wave climate from a multi-model ensemble. Nat. Climate Change, 3, 471476, doi:10.1038/nclimate1791.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., , J. Katzfey, , and C. E. Trenham, 2013b: Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Modell., 70, 221245, doi:10.1016/j.ocemod.2012.09.008.

    • Search Google Scholar
    • Export Citation
  • Hoeke, R. K., , K. L. McInnes, , J. Kruger, , R. McNaught, , J. R. Hunter, , and S. G. Smithers, 2013: Widespread inundation of Pacific islands triggered by distant-source wind-waves. Global Planet. Change, 108, 128138, doi:10.1016/j.gloplacha.2013.06.006.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , D. Masson, , and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, doi:10.1002/grl.50256.

    • Search Google Scholar
    • Export Citation
  • Kuriyama, Y., , M. Banno, , and T. Suzuki, 2012: Linkages among interannual variations of shoreline, wave and climate at Hasaki, Japan. Geophys. Res. Lett., 39, L06604, doi:10.1029/2011GL050704.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Menéndez, M., , F. Méndez, , I. J. Losada, , and N. E. Graham, 2008: Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys. Res. Lett., 35, L22607, doi:10.1029/2008GL035394.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and et al. , 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233258, doi:10.2151/jmsj.2012-A12.

    • Search Google Scholar
    • Export Citation
  • Mori, N., , T. Yasuda, , H. Mase, , T. Tom, , and Y. Oku, 2010: Projection of extreme wave climate change under global warming. Hydrol. Res. Lett., 4, 1519, doi:10.3178/hrl.4.15.

    • Search Google Scholar
    • Export Citation
  • Mori, N., , T. Shimura, , T. Yasuda, , and H. Mase, 2013: Multi-model climate projections of ocean surface variables under different climate scenarios—Future change of waves, sea level and wind. Ocean Eng., 71, 122129, doi:10.1016/j.oceaneng.2013.02.016.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , R. Mizuta, , and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, doi:10.1007/s00382-011-1223-x.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., , D. Parker, , E. Horton, , C. Folland, , L. Alexander, , D. Rowell, , E. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Sasaki, W., 2012: Changes in wave energy resources around Japan. Geophys. Res. Lett., 39, L23702, doi:10.1029/2012GL053845.

  • Semedo, A., , K. Sušelj, , A. Rutgersson, , and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Climate, 24, 14611479, doi:10.1175/2010JCLI3718.1.

    • Search Google Scholar
    • Export Citation
  • Semedo, A., , R. Weisse, , A. Behrens, , A. Sterl, , L. Bengtsson, , and H. Günther, 2013: Projection of global wave climate change toward the end of the twenty-first century. J. Climate, 26, 82698288, doi:10.1175/JCLI-D-12-00658.1.

    • Search Google Scholar
    • Export Citation
  • Short, A. D., 1999: Handbook of Beach and Shoreface Morphodynamics. John Wiley and Sons, 379 pp.

  • Solomon, S., , D. Quin, , M. Manning, , Z. Chen, , M. Marquis, , K. Averyt, , M. Tignor, , and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4_wg1_full_report.pdf.]

  • Stocker, T. F., and et al. , 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_ALL_FINAL.pdf.]

  • Suh, K.-D., , S.-W. Kim, , N. Mori, , and H. Mase, 2012: Effect of climate change on performance-based design of caisson breakwaters. J. Waterw. Port Coastal Ocean Eng., 138, 215225, doi:10.1061/(ASCE)WW.1943-5460.0000126.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Tech. Note 276, 220 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.]

  • Tolman, H. L., , and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, doi:10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , and V. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14, 22042221, doi:10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , and V. Swail, 2006: Climate change signal and uncertainty in projections of ocean wave heights. Climate Dyn., 26, 109126, doi:10.1007/s00382-005-0080-x.

    • Search Google Scholar
    • Export Citation
  • Young, I., , S. Zieger, , and A. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, doi:10.1126/science.1197219.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., , Y. Wang, , and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415, doi:10.1175/JCLI-D-12-00798.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 131 26
PDF Downloads 143 143 31

Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific

View More View Less
  • 1 Graduate School of Engineering, Kyoto University, Kyoto, Japan
  • | 2 Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of the wave climate to sea surface temperature (SST) conditions in an effort to understand the mechanism behind the wave climate changes by specifically looking at spatial SST variation. A series of wave climate projections forced by surface winds from the MRI-AGCM3.2 were conducted based on SST ensemble experiments. The results yield future changes in annual mean wave height that are within about ±0.3 m. The future changes in summertime wave height in the western North Pacific (WNP), which are influenced by tropical cyclone changes, are highly sensitive to SST conditions. To generalize the result, the wave climate change and SST relation found by this study was compared with multimodel wave ensemble products from the Coordinated Ocean Wave Climate Project (COWCLIP). The spatial variation of SST in the tropical Pacific Ocean is a major factor in the wave climate changes for the WNP during summer.

Corresponding author address: Tomoya Shimura, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8530, Japan. E-mail: shimura.tomoya.36w@st.kyoto-u.ac.jp

Abstract

Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of the wave climate to sea surface temperature (SST) conditions in an effort to understand the mechanism behind the wave climate changes by specifically looking at spatial SST variation. A series of wave climate projections forced by surface winds from the MRI-AGCM3.2 were conducted based on SST ensemble experiments. The results yield future changes in annual mean wave height that are within about ±0.3 m. The future changes in summertime wave height in the western North Pacific (WNP), which are influenced by tropical cyclone changes, are highly sensitive to SST conditions. To generalize the result, the wave climate change and SST relation found by this study was compared with multimodel wave ensemble products from the Coordinated Ocean Wave Climate Project (COWCLIP). The spatial variation of SST in the tropical Pacific Ocean is a major factor in the wave climate changes for the WNP during summer.

Corresponding author address: Tomoya Shimura, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8530, Japan. E-mail: shimura.tomoya.36w@st.kyoto-u.ac.jp
Save